A Review on Transungal Patch for Effective Treatment on Nail Infection

Authors

  • Pote P. Yash Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India
  • Dr. Sandeep C. Atram Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India
  • Dr. Vikrant P. Wankhade Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India
  • Dr. Nishan N. Bobade Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India
  • Dr. Shrikant D. Pande Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

DOI:

https://doi.org/10.22270/ajprd.v14i01.1698

Abstract

Transungual drug delivery presents a promising, targeted strategy for the treatment of nail conditions such as onychomycosis and nail psoriasis, effectively overcoming the limitations associated with traditional oral and topical therapies. The distinctive architecture of the nail creates substantial obstacles to drug penetration owing to its girth, limited permeability, and dense keratin composition. Recent progress in drug formulation—including the development of transungual patches, permeation enhancers, and nanocarrier systems—has enhanced the delivery of drugs to the nail bed and matrix, where the majority of pathologies are located. Transungual patches, in particular, offer sustained adhesion, regulated drug delivery, and improved patient adherence. Their efficacy and safety are assessed through a comprehensive analysis of physical, mechanical, and biological parameters, including uniformity of thickness and weight, folding endurance, tensile strength, surface pH, moisture content, drug content, drug release profile, permeation studies, antifungal activity, and stability. Although laboratory results are promising, additional clinical studies are necessary to refine the patch design, improve nail adhesion, and confirm its effectiveness and applicability in real-world applications.

 

Downloads

Download data is not yet available.

Author Biographies

Pote P. Yash, Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Dr. Sandeep C. Atram, Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Dr. Vikrant P. Wankhade, Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Dr. Nishan N. Bobade, Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Dr. Shrikant D. Pande, Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

Department of Pharmaceutics, Vidyabharti College of Pharmacy, Amravati, Maharashtra, India

 

 

References

Hussan D, Choudhary SR, Sharma D, Bhandari V, Singh M. Transungual drug delivery: a novel approach with unique features. Indo Am J Pharm Res. 2013;3(6):4460–4469.

Firoz S, Sirisha MN, Rajalakshmi R. Transungual drug delivery system: a review. Int J Innov Drug Discov. 2011;1(1):9–14.

Kumar PT, Narayana RP. Transungual drug delivery: a promising route to treat nail disorders. Int J Pharm Res. 2013;2(1):22–23.

Rigopoulos D. Anatomy and physiology of the nail unit. In: Nail Therapies: Current Clinical Practice. Boca Raton: CRC Press; 2021. p. 1–12.

Haneke E. Histopathology of the nail: onychopathology. In: Nail Disorders. Boca Raton: CRC Press; 2017.

Murthy SN, Maibach HI. Topical nail products and ungual drug delivery. Boca Raton: CRC Press; 2012.

Cecchini A, Montella A, Ena P, Meloni GB, Mazzarello V. Ultrasound anatomy of normal nail unit with 18-MHz linear transducer. Ital J Anat Embryol. 2009;114(4):137–144.

Farren L, Shayler S, Ennos AR. The fracture properties and mechanical design of human fingernails. J Exp Biol. 2004;207(5):735–741. doi:10.1242/jeb.00814.

Rubin AI, Daniel CR. Simple onycholysis and the disappearing nail bed. In: Scher and Daniel’s Nails. Cham: Springer; 2018. p. 227–232.

Muddasani S, Lin G, Hooper J, Sloan SB. Nutrition and nail disease. Clin Dermatol. 2021;39(4):546–553.

Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236(1–2):1–26. doi:10.1016/S0378-5173(01)00989-9.

Khanna S, Bajaj R, Khurana B, Srivastava K. Pharmacotherapeutic principles of ungual drug delivery system. Int J Drug Dev Res. 2012;3(3):9–18.

Rajendra VB, Baro A, Kumari A, Dhamecha DL, Lahoti SR, Shelke SD. Transungual drug delivery: an overview. J Appl Pharm Sci. 2012;2(1):203–209.

Kiran RS, Shekar BC, Vishnu P, Prasad M. Ungual drug delivery system of ketoconazole nail lacquer. Int J Appl Pharm. 2010;2(4):17–19.

Muralidhar P, Bhargav E, Reddy KR. Transungual drug delivery: an overview. Int J Pharma Res Health Sci. 2017;5(1):1522–1528. doi:10.21276/ijprhs.2017.01.01.

Patil PS, Badgujar S, Torne A. Nailing the nail trouble by transungual drug delivery. Eur J Pharm Med Res. 2015;2(2):551–571.

Palliyil B, Lebo DB. A novel transungual formulation (nail patch) for delivery of ciclopirox olamine into the nail and nail folds. Int J Pharma Med Biol Sci. 2014;3(3):1–6.

Khan AD, Giri A, Singh L. Transungual drug delivery: a newer approach. World J Pharm Pharm Sci. 2014;3(3):781–794.

Ohn J, Hur K, Park H, Cho S, Mun J. Dermoscopic patterns of green nail syndrome. J EurAcad Dermatol Venereol. 2021;35(8):e512–e514. doi:10.1111/jdv.17224.

Rathi AR, Popat RR, Adhao VS, Shrikhande VN. Nail drug delivery system: a review. Int J Pharm Chem Anal. 2020;7(1):9–21. doi:10.18231/j.ijpca.2020.002.

Turner R, Weaver S, Caserta F, Brown MB. A novel vehicle for enhanced drug delivery across the human nail for the treatment of onychomycosis. Int J Pharm Compd. 2016;20(1):71–80.

Metta SDK. Development and evaluation of a novel transungual formulation (nail patch) for the treatment of onychomycosis. [dissertation]. 2018.

Murthy SN, Waddell DC, Shivakumar H, Balaji A, Bowers CP. Iontophoretic permselective property of human nail. J Dermatol Sci. 2007;46(2):150–152. doi:10.1016/j.jdermsci.2006.12.010.

Arrese JE, Piérard GE. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology. 2003;207(3):255–260. doi:10.1159/000073086.

Walters KA, Flynn GL. Drug delivery through the nail plate: theory and practice. Adv Drug Deliv Rev. 2005;57(5):775–789. doi:10.1016/j.addr.2004.11.003.

Brown MB, Traynor MJ, Turner RB. Nail structure and transungual drug delivery. J Pharm Pharmacol. 2009;61(11):1389–1396. doi:10.1211/jpp.61.11.0001.

Palliyil BB, Lebo DB. Design and evaluation of medicated nail patches for sustained antifungal delivery. Drug Dev Ind Pharm. 2014;40(8):1078–1086. doi:10.3109/03639045.2013.789056.

Nair AB, Murthy SN. Transungual drug delivery: strategies and challenges. J Pharm Sci. 2015;104(9):2849–2865. doi:10.1002/jps.24542.

Chouhan P, Saini TR. Hydration of nail plate: a key factor in transungual drug delivery. J Pharm Sci. 2014;103(8):2337–2346. doi:10.1002/jps.24038.

Brown MB, Khengar RH, Turner RB, Forbes B. Overcoming the nail barrier: chemical penetration enhancement. Int J Pharm. 2009;370(1–2):61–67. doi:10.1016/j.ijpharm.2008.11.029.

Murdan S. Enhancement strategies for transungual drug delivery. Drug Deliv Transl Res. 2012;2(5):328–340. doi:10.1007/s13346-012-0099-0.

Ahn TS, Lee JP, Kim J, Chun MK, Choi HK. Effect of pressure-sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane. Arch Pharm Res. 2013;36(11):1403–1409. doi:10.1007/s12272-013-0157-9.

Turner R, Brown MB. Design considerations for transungual patch drug delivery systems. Int J Pharm. 2016;512(2):460–468. doi:10.1016/j.ijpharm.2016.08.055.

Mertin D, Lippold BC. In vitro permeability of the human nail and of a keratin membrane from bovine hoof. J Pharm Sci. 1997;86(6):696–700. doi:10.1021/js960297a.

Naumann S, et al. Investigation of diffusion pathways through the human nail plate. Eur J Pharm Biopharm. 2014;86(3):357–364. doi:10.1016/j.ejpb.2013.11.004.

Hao J, Smith KA, Li SK. Chemical methods to enhance transungual transport of terbinafine. Int J Pharm. 2008;357(1–2):95–99. doi:10.1016/j.ijpharm.2008.01.041.

Repka MA, Bandari S, Kallakunta VR. Hot-melt extrusion technology in pharmaceutical film development. Drug Dev Ind Pharm.2018;44(4):569–580. doi:10.1080/03639045.2017.1391835.

Murthy SN, Shivakumar H, Balaji A. Physical approaches to enhance drug delivery across the nail plate. Dermatol Ther. 2012;25(6):510–520. doi:10.1111/dth.12004.

Amichai B, Nitzan B, Mosckovitz R, Shemer A. Iontophoretic delivery of terbinafine in onychomycosis: a preliminary study. Br J Dermatol. 2010;162(1):46–50. doi:10.1111/j.1365-2133.2009.09487.x.

United States Pharmacopeia. USP <1724>: Semisolid drug products—performance tests. USP–NF. Rockville (MD): United States Pharmacopeial Convention.

International Council for Harmonisation. ICH Q1A(R2): Stability testing of new drug substances and products. Geneva: ICH; 2003.

Rizi K, Xu K, Begum T, Faull J, Bhakta S, Murdan S. A drug-in-adhesive anti-onychomycotic nail patch: Influence of drug and adhesive nature on drug release, ungual permeation, in vivo residence in human and anti-fungal efficacy. International Journal of Pharmaceutics. 2022 Feb 25;614:121437.

Downloads

Published

2026-02-15

How to Cite

Pote P. Yash, Dr. Sandeep C. Atram, Dr. Vikrant P. Wankhade, Dr. Nishan N. Bobade, & Dr. Shrikant D. Pande. (2026). A Review on Transungal Patch for Effective Treatment on Nail Infection . Asian Journal of Pharmaceutical Research and Development, 14(01), 48–56. https://doi.org/10.22270/ajprd.v14i01.1698

Most read articles by the same author(s)

1 2 > >>