A review Review on Co-Crystals New Approach to Modify the Physicochemical Characteristics of API

Authors

  • Varda Joshi YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara
  • Poonam Raut YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara
  • Nikita Bhosale YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara

DOI:

https://doi.org/10.22270/ajprd.v11i3.1263

Keywords:

Pharmaceutical cocrystals, cocrystallization, solubility, stability, bioavailability, physicochemical property

Abstract

The expansion of a novel product is constrained by an active medicinal ingredient's poor solubility in aqueous solutions and limited oral bioavailability. A novel strategy to improve the physicochemical characteristics of the active medicinal ingredient is co-crystal formation. The pharmacological action of the API is unaffected by co-crystallization with pharmaceutically acceptable molecules, although it can enhance the physical characteristics like solubility, stability, and dissolution rate. Cocrystals are multi-component systems comprising active medicinal ingredients that also contain a stoichiometric amount of a coformer that is acceptable to the pharmaceutical industry. The pharmaceutical business has a significant chance to create new medicinal products since producing pharmaceutical co-crystals can enhance a drug's physicochemical qualities.The most major benefit of co-crystals is their ability to produce novel medications with improved solubility, which increases the effectiveness and safety of the treatment. The thermodynamic stability of the co-crystal preparation is the key influencing factor. Co-crystal screening provides information on the chemical composition and connection between the active medicinal ingredient and the coformer. This review discusses the many co-crystal synthesis techniques, including hot-melt extrusion, slurrying, antisolvent, grinding, and spray drying. Here is a quick explanation of the characteriszation methods frequently employed for co-crystals, as well as their uses in medicine. Here are some quick summaries of reported research on co-crystals that were evaluated in order to better grasp the notion of co-crystals.

 

Downloads

Download data is not yet available.

Author Biographies

Varda Joshi, YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara

YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara                                

Poonam Raut, YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara

YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara                                

Nikita Bhosale, YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara

YSPM’s YTC Faculty of Pharmacy Wadhe Phata, Satara                                

References

1. Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J. Pharm. Sci., 2018; 79(6): 858-71.
2. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique usingcyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal, 2014; 96:10-20.
3. Javoor MG, Mondal PK, Chopra D. Cocrystals: a review of recent trends in pharmaceutical and material science applications. Mat. Sci. Res. India, 2017; 14(1):09- 18.
4. Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical Cocrystal of Piroxicam: Design, formulation andevaluation. Adv. Pharm. Bull, 2017; 7(3):399.
5. Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth & Charact, 2016; 62(3):1-8.
6. Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev., 2017; 117: 178-95.
7. Stoler E, Warner JC. Non-covalent derivatives: cocrystals and eutectics. Molecules, 2015; 20(8):14833-48.
8. Ren S, Liu M, Hong C, Li G, Sun J, Wang J, et al. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behaviour of myricetin co-crystals. Acta Pharm. Sin. B, 2019; 9(1):59-73.
9. Gadade DD, Pekamwar SS. Pharmaceutical cocrystals: regulatory and strategic aspects, design and development. Adv. Pharm. Bull, 2016; 6(4):479.
10. Panzade P, Shendarkar G. Design and Preparation of Zaltoprofen-Nicotinamide Pharmaceutical Cocrystals via Liquid Assisted Grinding Method. Indian J. Pharm. Educ. Res., 2019; 53(4):S563-70.
11. Apshingekar PP, Aher S, Kelly AL, Brown EC, Paradkar A. Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization. J. Pharm. Sci., 2017; 106(1):66-70.
12. Rahman F, Winantari AN, Siswandono Ds. Comparison Study Of Grinding And Slurrymethod On Physicochemical Characteristic Of Acyclovir–Succinic Acid Cocrystal. Asian J Pharm Clin Res., 2017; 10(3):153-8.
13. Mundhe AV. Cocrystallization: an alternative approach for solid modification. J. Drug Deliv. Ther., 2013; 3(4):166-72.
14. Raza SA, Schacht U, Svoboda V, Edwards DP, Florence AJ, Pulham CR, SefcikJ,Oswald ID. RapidContinuous Antisolvent Crystallization of Multicomponent Systems. Cryst. Growth Des., 2018; 18(1):210-8.
15. Savjani JK. Co‐crystallization: An approach to improve the performance characteristics of activepharmaceutical ingredients. Asian J. Pharm, 2015; 9(3):147-51.
16. Kelly AL, Halsey SA, Bottom RA, Korde S, Gough T, Paradkar A. A novel transflectance near infrared spectroscopy technique for monitoring hot melt extrusion. Int. J. Pharm, 2015; 496(1):117-23.
17. Sanjay A, Manohar D, Bhanudas SR. Pharmaceutical cocrystallization: A review. J. Adv. Pharm, 2014; 4(4).
18. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modificationapproaches for the formulation of APIs. Pharmaceutics, 2018; 10(1):18.
19. Kotak U, Prajapati V, Solanki H, Jani G, Jha P. Co-crystallization technique its rationale and recent progress. World J. Pharm. Res., 2015; 4(4):1484-508.
20. Ziaee A, Albadarin AB, Padrela L, Faucher A, O'Reilly E, Walker G. Spray drying ternary amorphous solid dispersions of ibuprofen–An investigation into critical formulation and processing parameters. Eur J Pharm Biopharm, 2017; 120:43-51.
21. Fong SYK, Ibisogly A, Bauer-Brandl A. Solubility enhancement of BCS class-II drug by solid phospholipid dispersions: Spray drying versus freeze-drying. Int. J. Pharm, 2015; 496:382-91.
22. Urano M, Kitahara M, Kishi K, Goto E, Tagami T, Fukami T, Ozeki T. Physical Characteristics of Cilostazol–Hydroxybenzoic Acid Cocrystals Prepared Using a Spray Drying Method. Crystals, 2020; 10(4):313.
23. Madhavi G, Bhavya MV, Lalitha T, Jyothika G, Bhavana VV, Rani MH, Lakshmi MB, Padmalatha K. Pharmaceutical Co-crystals: A Review. Asian J. Pharm. Sci., 2019; 9(3).
24. Setyawan D, Sari R, Yusuf H, Primaharinastiti R. Preparation and characterization of artesunate-nicotinamide cocrystal by solvent evaporation and slurry method. Asian J Pharm Clin Res., 2014; 7(1):62-5.
25. Aitipamula S, Vangala VR. X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. J Indian Inst Sci., 2017; 97(2):227-43.
26. Patole T, Deshpande A. Co-crystallization-a technique for solubility enhancement. Int. J. Pharm. Sci. Res., 2014; 5(9): 3566-76.
27. Alatas FI, Ratih HE, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation. Int. J. Pharm. Res., 2015; 7(3):423-6.
28. Yadav S, Gupta PC, Sharma N, Kumar J. Cocrystals: An Alternative Approach To Modify Physicochemical Properties Of Drugs. Int. J. Adv. Pharm. Biol. Sci., 2015; 5(2).
29. Yamashita H, Hirakura Y, Yuda M, Terada K. Coformer screening using thermal analysis based on binary phase diagrams. J. Pharm. Res., 2014; 31(8):1946-57.
30. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int. J. Pharm, 2011; 419(1-2): 1-1.
31. Forster A, Hempenstall J. Rades T. Characterization of glass solutions Mirza S, Heinämäki J, Miroshnyk I, Yliruusi J. Co-crystals: An emerging approach to improving properties of pharmaceutical solids. Eur J Pharm Sci 2008; 34:S16-7.
32. Burton WK, Cabrera N, Frank FC. The growth of crystals. Phil Tran R Soc Lond A 1951; 243:299-358.
33. Ning S, Michael JZ. The role of co-crystals in pharmaceutical science. Drug Discov Today 2008;13:440-6.
34. Portalone GC. First example of co-crystals of polymorphic maleic hydrazide. J Chem Crystallogr 2004;34:609-12.
35. Aakeröy CB. Beatty AM, Helfrich BA, Nieuwenhuyzen M. Do polymorphic compounds make good cocrystallising agents? A structural case study that demonstrates the importance of synthon flexibility. Cryst Growth Des 2003; 3:159-65.
36. Zaworotko M. Polymorphism in co-crystals and pharmaceutical co-crystals. Florence: XX Congress of the International Union of Crystallography: 2005.
37. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007; 59:617–30.
38. Mutalik S, Prambil A, Krishnan M, Achuta NU. Enhancement of dissolution rate and bioavailability of aceclofenac: A chitosan based solvent change approach. Int J Pharm 2008; 350:279-90.
39. Tiwary AK, Swarbreek editor. Crystal habit changes and dosage form performance. Encyclopedia of Pharmaceutical Technology, New York, London: Informa Healthcare; 2007; 2(3):820.
40. Nair RH, Ron CK, Brent DS, Jonathan MM, Swarbreek editors. Crystallization: General principles and significance on product development. Encyclopedia ofPharmaceutical Technology, London: Informa Healthcare; 2007; 2(3):834.
41. Kiang YH, Yang CY, Staples RJ, Jonan J. Crystal structure, crystal morphology, and surface properties of an investigational drug. Int J Pharm 2009; 368:76-82.
42. Rasenac N, Muller BW. Properties of ibuprofen crystallized undervarious conditions: A comparative study. Drug Develop Ind Pharm 2001; 27:803-9.
43. Jingkang W, Yongli W, Ying B, Effects of solvent and impurity on crystal habit modification of 11α-hydroxy-16α,17α-epoxyprogesteron. Chin J Chem Eng 2007; 15:648-53.
44. Aaltonen J, Alleso M, Mirza S, Koradia V, Gorden KC, Rantanen J. Solid form screening: A review. Eur J Pharm Biopharm 2009; 71:23-37.
45. Higuchi T, Roy K. Study of possible complex formation between macromolecules and certain pharmaceuticals I. Polyvinylpyrrolidone (PVP) with sulfathiazole, procaine hydrochloride, sodium salicylate, benzylpenicillin, chloramphenicol, mandelic acid, caffeine, theophylline, and cortisone. J Am Pharm Assoc 1954; 43:393-7.

Published

2023-06-15

How to Cite

Joshi, V., Raut, P., & Bhosale, N. (2023). A review Review on Co-Crystals New Approach to Modify the Physicochemical Characteristics of API. Asian Journal of Pharmaceutical Research and Development, 11(3), 103–111. https://doi.org/10.22270/ajprd.v11i3.1263