Nanosponge: An Overview

Authors

  • Poonam Raut YSPM’s YTC, Faculty of Pharmacy, Wadhe Phata, Satara
  • Nikita Bhosale YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara
  • Varda Joshi YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara

DOI:

https://doi.org/10.22270/ajprd.v11i3.1259

Keywords:

Nanosponges, Cyclodextrin, Cross linking agents, targeted delivery, etc.

Abstract

The "Pharmaceutical Nanotechnology" subfield of pharmaceutical sciences, which is now in its infancy, offers new tools, prospects, and horizons with potential applications in the field of therapy and diagnostics of disease. Pharmaceutical nanotechnology consists of items that are nanosized and may be altered in many ways to enhance their properties. According to the administration method, the nanoporous particles are NSs that may entangle a wide variety of materials before being absorbed into a suitable formulation. They delay the drug's release in a regulated manner, stop the drug's protein from degrading, and disperse the drug where it is needed. They can move about the body, connect to the skin, and release the medicine at the intended target spot in a regulated and predictable way. They have excellent aqueous solubility, making them a carrier for medications with poor water solubility. When compared to other nanocarriers, they have greater drug loading capabilities. They are therefore appropriate for addressing issues with active ingredient stability, solubility, and delayed release. The main benefit of nanosponges of weakly water soluble medicines. They can function as biocatalysts in the administration of enzymes, proteins, vaccines, and antibodies and can administer medications via a variety of routes, including oral, topical, parental, etc.

 

Downloads

Download data is not yet available.

Author Biographies

Poonam Raut, YSPM’s YTC, Faculty of Pharmacy, Wadhe Phata, Satara

YSPM’s YTC, Faculty of Pharmacy, Wadhe Phata, Satara

 

Nikita Bhosale, YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara

YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara

Varda Joshi, YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara

YSPM’s YTC, Faculty of pharmacy, Wadhe phata,Satara

References

1. Bhatia S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. Natural Polymer Drug Delivery Systems, Springer International Publishing Switzerland, 2016.
2. Dhavala PB, Tenneti VS. An interesting nanosponges as a nanocarrier for novel drug delivery: A review. Int J Pharm Med Res 2017; 5:1-7.
3. Bezawada S, Charanjitha, Reddy VM, Naveena. Nanosponges: A concise review for emerging trends. Int J Pharm Res Biomed Anal 2014;3:1-6.
4. Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ. Cyclodextrin-based nanosponges: A propitious platform for enhancing drug delivery. Expert Opin Drug Deliv 2014;11:111-20.
5. Jyoti P, Tulsi B, Popin K, Chetna B. An innovative advancement for targeted drug delivery: Nanosponges. Indo Glob J Pharm Sci 2016;6:59-64.
6. Swaminathan S, Darandale S, Vavia PR. Nanosponge-aided drug delivery: A closer look. Pharm Formul Qual 2012;14:12-5.
7. Szejtli J. Cyclodextrin Technology. Berlin: Springer Science and Business Media; 1988. p. 450.
8. Salisbury D. Nanosponge Drug Delivery System more Effective Than Direct Injection. Nashville: Vanderbilt University; 2010. Available from: http://www.news.vanderbilt.edu/2010/06/nanosponge-drugdelivery-system-more-effective-thandirect-injection-116839. [Last accessed on 2012 Dec 20].
9. Subramanian S, Singireddy A, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system – review. J Pharm Pharm Sci 2012;15:103-11.
10. Targe BM, Patil MP, Jahagirdar Baliram D. Nanosponges- An emerging Drug Delivery System. Int J of Insti Pharm and Life Sci. 2015; 5(6):160-173.
11. Patel EK, Oswal RJ. Nanosponge and Microsponges: A Novel Drug Delivery System. International Journal of Research in Pharmacy and Chemistry, 2012.
12. Subramanian S, Sinireddy A, Krishnamoorthy K, Rajappan M. A Novel Class of Drug Delivery System
13. Nanosponges ; a boon to the targeted drug delivery system from slideshare
14. Guo L, Gao G, Liu X, Liu F. Preparation and characterization of TiO2 nanosponge. Mater Chem Phys., 2008, 111; 322-325.
15. Farrell D, Limaye S, Subramanian S. Silicon Nanosponge Particles. U.S. Pat 0, 251, 561A1., 9 Nov 2006.
16. Dakankov V, Llyin M, Tsyurupa M, Timofeeva G, Dubronina L. From a dissolved polystyrenecoil to intramolecularly hyper-crosslinked nanosponges. Macromolecules., 1998, 29; 8398-8403.
17. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D et al. Cyclodextrin based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm., 2010; 74:193-201
18. Bergal, A., Elmas, A., & Akyüz, G. (2019). A new type and efective approach for anti-cancer drug delivery application - A nano sponge. Nano Research & Applications, 5(3:1), 1–10. https://doi. org/10.36648/24719838.5.1.43
19. Navarro-Gázquez, P. J., Muñoz-Portero, M. J., Blasco-Tamarit, E., Sánchez-Tovar, R., Fernández-Domene, R. M., & García-Antón, J. Original approach to synthesize TiO2/ZnO hybrid nanosponges used as photoanodes for photoelectrochemical applications. Materials, 2021; 14(21):6441.
20. Farrell D., Limaye S. Y., Subramanian S. (2009). U.S. Patent No. 7,569,202. Washington, DC: U.S. Patent and Trademark Office Davankov, V. A., Ilyin, M. M., Tsyurupa, M. P., Timofeeva, G. I., & Dubrovina, L. V. (1996). From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked “nano sponge.” Macromolecules, 29(26), 8398–8403. https://doi.org/10.1021/ma951 673i
21. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm., 2013; 63:335-358
22. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R. inventors; Sea Marconi Technologies Sas, assignee. Ultrasound assisted synthesis of cyclodextrin based nanosponges. EP 1786 841 B1. 2007.
23. Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayur Pharm., 2011;2(5):1520-1526.
24. Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohyd Polym., 2011;86; 127-135.
25. Subramanian S, Singireddy A, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system – review. J Pharm Pharm Sci 2012;15:103-11
26. Osmani RA, Thirumaleshwar S, Bhosale RR, Kulkarni PK. Nanosponges: The spanking accession in drug delivery – An updated comprehensive review. Pelagia Res Lib Pharm Sin 2014; 5:7-21.
27. Patel B, Bagade O, Ramteke K, Patel R, Awsarker V. An assessment on preparation, characterization and poles a part appliances of nanosponges. Int J PharmTech Res 2014; 6:1898-907.
28. Maravajhala V., Papishetty S., Bandlapalli S., Nanotechnology in the development of drug delivery system,International journal of pharmaceutical sciences & research 2012; 3(1).
29. Srinivas P, Sreeja. K. Formulation and Evaluation of Voriconazole Loaded Nanosponges for Oral and Topical Delivery. Int J Drug Dev Res. 2013; 5(1):55-68.
30. Patel EK, Oswal RJ. Nanosponge and microsponges: A novel drug delivery system. Int J Res Pharm Chem 2012; 2:237-44.
31. Singh R, Bharti N, Madan J, Hiremath SN. Characterization of cyclodextrin inclusion complexes – A review. J Pharm Sci Technol 2010; 2:171-83.
32. Jyoti P, Tulsi B, Popin K, Chetna B. An Innovative Advancement for Targeted Drug Delivery: Nanosponges, Indo Global J Pharm Sci. 2016; 6(2):59-64.
33. Khan KA, Bhargav E, reddy KR, Sowmya C. Nanosponges: A New Approach for Drug Targetting. Int. J pharm. pharm. res. 2016; 7(3):381-396
34. Seema G, Kumar SA, Manoj B. Development and evaluation of curcumin loaded nanosponges for colon drug delivery. World J Pharm Res 2015; 4:1650-66.
35. Rajeswari C, Alka A, Javed A, Khar RK. Cyclodextrins in drug delivery: An update review. AAPS Pharm Sci Tech 2005; 6:E329-57.
36. Morsi N, Ghorab D, Refai H, Teba H. Preparation and evaluation of alginate/chitosan nanosdispersion for occular delivery. Int J Pharm Pharm Sci 2015; 7:234-40.
37. Manyam N, Reddy Budideti KK, Mogili S. Formulation and in vitro evaluation of nanosponges loaded extended release tablets of Trimethoprim. Unique Pub J Pharm Med Health Sci 2018;1:78-86
38. Ansari K., Torne S., Vavia P.R., Trotta F., Cavalli R., Cyclodextrin - Based Nanosponges for Delivery of Resveratrol: In Vitro Characterization, Stability, Cytotoxicity and Permeation Study, AAPS Pharm Sci Tech,2011;12(1).
39. Mandava SS, Thavva V, Int J Pharm Sci Res, 2012; 3(4):967-980.
40. Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opinion Drug Delivery 2014; 11:931-41.
41. Gidwani B, Vyas A. A comprehensive review of cyclodextrinbased carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015; 15:1-15.
42. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Inclusion Phenom Macrocyclic Chem 2008; 62:23-42
43. Shivani, S., & Poladi, K. K. Nano sponges-novel emerging drug delivery system: A review. Int J Pharmaceutical Sci Res,2015; 6(2):529–540. https://doi.org/10.13040/IJPSR.0975-8232.6(2). 529-40
44. Gangadharappa, H. V., Prasad, S. M. C., & Singh, R. P. (2017). Formulation, in vitro and in vivo evaluation of celecoxib nano sponge hydrogels for topical application. J Drug Delivery Science Technology, 41, 488–501. https://doi.org/10.1016/j.jddst.2017.09. 004
45. Wadhwa, A., Mathura, V., & Lewis, S. A. Emerging novel nano pharmaceuticals for drug delivery. Asian J Pharmaceutical Clinical Res,2018; 11(7):35–42.
46. Setijadi, E., Tao, L., Liu, J., Jia, Z., Boyer, C., & Davis, T. P. Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromolecules, 2009; 10:2699–2707.
47. Tejashri, G., Amrita, B., & Darshana, J. Cyclodextrin based nano sponges for pharmaceutical use: A review. Acta Pharmaceutical, 63(3), 335–358. https://doi.org/10.2478/ acph-2013-0021
48. Ansari, K. A., Vavia, P. R., Trotta, F., & Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. An Ofcial Journal of the American Association of Pharmaceutical Scientists, 2011; 12:279–286.
49. Rao, M. R. P., Chaudhari, J., Trotta, F., & Caldera, F. (2018). Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. An Ofcial Journal of the American Association of Pharmaceutical Scientists, 19(5), 2358–2369. https://doi.org/10.1208/s12249-018-1064-6 .
50. Rezaei, A., Varshosaz, J., Fesharaki, M., Farhang, A., & Jafari, S. M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. International Journal of Nanomedicine, 2019; 14:4589–4599. https://doi.org/10.2147/IJN.S206350
51. Shende, P. K., Gaud, R. S., Bakal, R., & Patil, D. (2015). Efect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids and Surfaces B: Biointerfaces,2015;136:105–110. https://doi.org/10.1016/j.colsurfb.2015.09.002
52. . Pandey, P., Purohit, D., & Dureja, H. Nanosponges -A promising novel drug delivery system. Recent Patents on Nanotechnology, 2018; 12(3):180–191. https://doi.org/10.2174/1872210512 666180925102842
53. . Pawar, S., & Shende, P. A comprehensive patent review on β-cyclodextrin cross-linked nanosponges for multiple applications. Recent Patents on Nanotechnology, 2020; 14(1):75–89. https:// doi.org/10.2174/1872210513666190603083930
54. Patil, T. S., Nalawade, N. A., Kakade, V. K., & Kale, S. N. Nano sponges: A novel targeted drug delivery for cancer treatment. International Journal for Advance Research and Development, 2017; 2(4):55–62

Published

2023-06-15

How to Cite

Raut, P., Bhosale, N., & Joshi, V. (2023). Nanosponge: An Overview. Asian Journal of Pharmaceutical Research and Development, 11(3), 76–83. https://doi.org/10.22270/ajprd.v11i3.1259