Therapeutic Potential of Curcuma Longa and Its Constituents Role in the Treatment of Multiple Sclerosis
DOI:
https://doi.org/10.22270/ajprd.v12i6.1486Abstract
A neurodegenerative illness characterised by chronic inflammation and demyelinating symptoms, multiple sclerosis (MS) mostly affects young people's central nervous systems. The condition is complex and variable due to multiple environmental and genetic factors. A disorder mediated by the immune system is what it is. Symptoms of neurological dysfunction that last a few days or weeks and can be recovered are common in the early stages of the disease, which include clinically isolated syndrome and relapsing-remitting multiple sclerosis. Turmeric, whose scientific name is Curcuma longa Linn. (C. longa), is a member of the Zingiberaceae family of plants that has a rich history of use in traditional medicine. In Unani and Ayurvedic medicine, C. longa has been used topically for inflammation and ulcers, and internally for jaundice and liver blockage. Blood purification, asthma, haemorrhoids, bronchitis, tumours, wounds, indigestion, colds, dental problems, skin infections, and hepatic illnesses are all helped by its antiseptic properties. The crucial phase that starts this cascade is when Th17 enters the central nervous system (CNS) through the blood-brain barrier (BBB) through damaged tight junctions. Interleukin (IL)-17 and IL-22 attach to their BBB receptors, allowing the migration to proceed. Then symptoms of neuromuscular diseases, such as axonal degeneration, start to show themselves. The Zingiberaceae family plant Curcuma longa is the source of curcumin, the active ingredient in turmeric. There is hope for the treatment of multiple sclerosis (MS) thanks to recent findings about the properties of curcumin, namely its ability to suppress the release of proinflammatory cytokines. When it comes to treating MS, this study will look at curcumin's many features and major impacts.
Downloads
References
Duquette, P., Pleines, J., Girard, M., Charest, L., Senecal-Quevillon, M., & Masse, C. (1992). The increased susceptibility of women to multiple sclerosis. Canadian Journal of Neurological Sciences, 19(4), 466-471.
Wallin, M. T., Culpepper, W. J., Campbell, J. D., Nelson, L. M., Langer-Gould, A., Marrie, R. A., ... & LaRocca, N. G. (2019). The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology, 92(10), e1029-e1040.
Langer-Gould, A., Brara, S. M., Beaber, B. E., & Zhang, J. L. (2013). Incidence of multiple sclerosis in multiple racial and ethnic groups. Neurology, 80(19), 1734-1739.
Wallin, M. T., Culpepper, W. J., Nichols, E., Bhutta, Z. A., Gebrehiwot, T. T., Hay, S. I., ... & Murray, C. J. (2019). Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(3), 269-285.
Kamm, C. P., Uitdehaag, B. M., & Polman, C. H. (2014). Multiple sclerosis: current knowledge and future outlook. European neurology, 72(3-4), 132-141.
Confavreux, C., & Vukusic, S. (2006). Natural history of multiple sclerosis: a unifying concept. Brain, 129(3), 606-616.
Wallin, M. T., Culpepper, W. J., Campbell, J. D., Nelson, L. M., Langer-Gould, A., Marrie, R. A., ... & LaRocca, N. G. (2019). The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology, 92(10), e1029-e1040.
Hollenbach, J. A., Bove, R., Sacco, S., Caverzasi, E., Bischof, A., Gundel, T., ... & Hauser, S. L. (2019). Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol, 85, 653-666.
Kurtzke, J. F. (2013). Epidemiology in multiple sclerosis: a pilgrim’s progress. Brain, 136(9), 2904-2917.
Ascherio, A., & Munger, K. L. (2007). Environmental risk factors for multiple sclerosis. Part I: the role of infection. Annals of neurology, 61(4), 288-299.
Pakpoor, J., Disanto, G., Gerber, J. E., Dobson, R., Meier, U. C., Giovannoni, G., & Ramagopalan, S. V. (2013). The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Multiple Sclerosis Journal, 19(2), 162-166.
Lang, H. L., Jacobsen, H., Ikemizu, S., Andersson, C., Harlos, K., Madsen, L., ... & Fugger, L. (2002). A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nature immunology, 3(10), 940-943.
Tracy, S. I., Kakalacheva, K., Lünemann, J. D., Luzuriaga, K., Middeldorp, J., & Thorley-Lawson, D. A. (2012). Persistence of Epstein-Barr virus in self-reactive memory B cells. Journal of virology, 86(22), 12330-12340.
Koch-Henriksen, N., & Sørensen, P. S. (2010). The changing demographic pattern of multiple sclerosis epidemiology. The Lancet Neurology, 9(5), 520-532.
Sintzel, M. B., Rametta, M., & Reder, A. T. (2018). Vitamin D and multiple sclerosis: a comprehensive review. Neurology and therapy, 7, 59-85.
Palacios, N., Alonso, A., BrØnnum-Hansen, H., & Ascherio, A. (2011). Smoking and increased risk of multiple sclerosis: parallel trends in the sex ratio reinforce the evidence. Annals of epidemiology, 21(7), 536-542.
Handel, A. E., Williamson, A. J., Disanto, G., Dobson, R., Giovannoni, G., & Ramagopalan, S. V. (2011). Smoking and multiple sclerosis: an updated meta-analysis. PloS one, 6(1), e16149.
Hedstrom, A. K., Baarnhielm, M., Olsson, T., & Alfredsson, L. (2009). Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology, 73(9), 696-701.
Ristori, G., Cannoni, S., Stazi, M. A., Vanacore, N., Cotichini, R., Alfò, M., ... & Italian Study Group on Multiple Sclerosis in Twins. (2006). Multiple sclerosis in twins from continental Italy and Sardinia: a nationwide study. Annals of neurology, 59(1), 27-34.
Hollenbach, J. A., & Oksenberg, J. R. (2015). The immunogenetics of multiple sclerosis: A comprehensive review. Journal of autoimmunity, 64, 13-25.
Gandhi, R., Laroni, A., & Weiner, H. L. (2010). Role of the innate immune system in the pathogenesis of multiple sclerosis. Journal of neuroimmunology, 221(1-2), 7-14.
Kasper, L. H., & Shoemaker, J. (2010). Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology, 74(1_supplement_1), S2-S8.
Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon‐γ during innate and adaptive immune responses. Advances in immunology, 96, 41-101.
Zhu, J., & Paul, W. E. (2008). CD4 T cells: fates, functions, and faults. Blood, The Journal of the American Society of Hematology, 112(5), 1557-1569.
Minty, A., Chalon, P., Derocq, J. M., Dumont, X., Guillemot, J. C., Kaghad, M., ... & Caput, D. (1993). lnterleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature, 362(6417), 248-250.
Wynn, T. A. (2003). IL-13 effector functions. Annual review of immunology, 21(1), 425-456.
Ouyang, W., Kolls, J. K., & Zheng, Y. (2008). The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 28(4), 454-467.
Duddy, M., Niino, M., Adatia, F., Hebert, S., Freedman, M., Atkins, H., ... & Bar-Or, A. (2007). Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. The Journal of Immunology, 178(10), 6092-6099.
Røsjø, E., Myhr, K. M., Løken-Amsrud, K. I., Bakke, S. J., Beiske, A. G., Bjerve, K. S., ... & Holmøy, T. (2014). Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. Journal of neuroimmunology, 271(1-2), 60-65.
Gronseth, G. S., & Ashman, E. J. (2000). Practice parameter: The usefulness of evoked potentials in.
Greene, D. N., Schmidt, R. L., Wilson, A. R., Freedman, M. S., & Grenache, D. G. (2012). Cerebrospinal fluid myelin basic protein is frequently ordered but has little value: a test utilization study. American journal of clinical pathology, 138(2), 262-272.
Shah, I., James, R., Barker, J., Petroczi, A., & Naughton, D. P. (2011). Misleading measures in Vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutrition journal, 10, 1-9.
Ayati, Z., Ramezani, M., Amiri, M. S., Moghadam, A. T., Rahimi, H., Abdollahzade, A., ... & Emami, S. A. (2019). Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. Current pharmaceutical design, 25(8), 871-935.
Banji, D., Banji, O. J., & Srinivas, K. (2021). Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model. BioMed Research International, 2021(1), 6645720.
Basu, S., Samanta, H. S., & Ganguly, J. (2018). Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Materials, 16(1), 7-19.
Bhawana, Basniwal, R. K., Buttar, H. S., Jain, V. K., & Jain, N. (2011). Curcumin nanoparticles: preparation, characterization, and antimicrobial study. Journal of agricultural and food chemistry, 59(5), 2056-2061.
Billiard, S. M., Timme-Laragy, A. R., Wassenberg, D. M., Cockman, C., & Di Giulio, R. T. (2006). The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicological Sciences, 92(2), 526-536.
Binic, I., Lazarevic, V., Ljubenovic, M., Mojsa, J., & Sokolovic, D. (2013). Skin ageing: natural weapons and strategies. Evidence‐Based Complementary and Alternative Medicine, 2013(1), 827248.
Bundy, R., Walker, A. F., Middleton, R. W., & Booth, J. (2004). Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: a pilot study. Journal of Alternative & Complementary Medicine, 10(6), 1015-1018.
Cao, Q., Zhang, J., Gao, L., Zhang, Y., Dai, M., & Bao, M. (2018). Dickkopf 3 upregulation mediates the cardioprotective effects of curcumin on chronic heart failure. Molecular medicine reports, 17(5), 7249-7257.
Carabineiro, S. A. C. (2017). Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules, 22(5), 857.
Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15, 195-218.
Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research, 23(1/A), 363-398.
Lestari, M. L., & Indrayanto, G. (2014). Curcumin. Profiles of drug substances, excipients and related methodology, 39, 113-204.
Mahady, G. B., Pendland, S. L., Yun, G., & Lu, Z. Z. (2002). Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer research, 22(6C), 4179-4181.
Reddy, R. C., Vatsala, P. G., Keshamouni, V. G., Padmanaban, G., & Rangarajan, P. N. (2005). Curcumin for malaria therapy. Biochemical and biophysical research communications, 326(2), 472-474.
Vera‐Ramirez, L., Pérez‐Lopez, P., Varela‐Lopez, A., Ramirez‐Tortosa, M., Battino, M., & Quiles, J. L. (2013). Curcumin and liver disease. Biofactors, 39(1), 88-100.
Panahi, Y., Hosseini, M. S., Khalili, N., Naimi, E., Simental-Mendía, L. E., Majeed, M., & Sahebkar, A. (2016). Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomedicine & pharmacotherapy, 82, 578-582.
Kuptniratsaikul, V., Dajpratham, P., Taechaarpornkul, W., Buntragulpoontawee, M., Lukkanapichonchut, P., Chootip, C., ... & Laongpech, S. (2014). Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clinical Interventions in aging, 451-458.
Mazzolani, F., & Togni, S. (2013). Oral administration of a curcumin-phospholipid delivery system for the treatment of central serous chorioretinopathy: A 12-month follow-up study. Clinical ophthalmology, 939-945.
Allegri, P., Mastromarino, A., & Neri, P. (2010). Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clinical Ophthalmology, 1201-1206.
Ghanaatian, N., Lashgari, N. A., Abdolghaffari, A. H., Rajaee, S. M., Panahi, Y., Barreto, G. E., ... & Sahebkar, A. (2019). Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. Journal of cellular physiology, 234(8), 12237-12248.
Mohajeri, M., Sadeghizadeh, M., Najafi, F., & Javan, M. (2015). Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology, 99, 156-167.
Momtazi, A. A., Shahabipour, F., Khatibi, S., Johnston, T. P., Pirro, M., & Sahebkar, A. (2016). Curcumin as a MicroRNA regulator in cancer: a review. Reviews of Physiology, Biochemistry and Pharmacology, Vol. 171, 1-38.
Moorthi, C., & Kathiresan, K. (2013). Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. Journal of Medical Hypotheses and Ideas, 7(1), 15-20.
Myhr, K. M., & Mellgren, S. I. (2009). Corticosteroids in the treatment of multiple sclerosis. Acta Neurologica Scandinavica, 120, 73-80.
Natarajan, C., & Bright, J. J. (2002). Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. The Journal of Immunology, 168(12), 6506-6513.
Panahi, Y., Badeli, R., Karami, G. R., & Sahebkar, A. (2015). Investigation of the efficacy of adjunctive therapy with bioavailability‐boosted curcuminoids in major depressive disorder. Phytotherapy Research, 29(1), 17-21.
Panahi, Y., Ghanei, M., Hajhashemi, A., & Sahebkar, A. (2016). Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. Journal of dietary supplements, 13(1), 93-105.
Panahi, Y., Hosseini, M. S., Khalili, N., Naimi, E., Majeed, M., & Sahebkar, A. (2015). Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clinical nutrition, 34(6), 1101-1108.
Panahi, Y., Kianpour, P., Mohtashami, R., Jafari, R., Simental-Mendía, L. E., & Sahebkar, A. (2016). Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. Journal of cardiovascular pharmacology, 68(3), 223-229.
Yan, J., & Greer, J. M. (2008). NF-κB, a potential therapeutic target for the treatment of multiple sclerosis. CNS & neurological Disorders-Drug targets (formerly current drug Targets-CNS & neurological Disorders), 7(6), 536-557.
Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., ... & Prat, A. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature medicine, 13(10), 1173-1175.
Trajkovic, V., Stosic-Grujicic, S., Samardzic, T., Markovic, M., Miljkovic, D., Ramic, Z., & Stojkovic, M. M. (2001). Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. Journal of neuroimmunology, 119(2), 183-191.
Kawanokuchi, J., Shimizu, K., Nitta, A., Yamada, K., Mizuno, T., Takeuchi, H., & Suzumura, A. (2008). Production and functions of IL-17 in microglia. Journal of neuroimmunology, 194(1-2), 54-61.
Bailey, S. L., Schreiner, B., McMahon, E. J., & Miller, S. D. (2007). CNS myeloid DCs presenting endogenous myelin peptides' preferentially'polarize CD4+ TH-17 cells in relapsing EAE. Nature immunology, 8(2), 172-180.
Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The international journal of biochemistry & cell biology, 41(1), 40-59.
Kim, H. Y., Park, E. J., Joe, E. H., & Jou, I. (2003). Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. The Journal of Immunology, 171(11), 6072-6079.
Kim HeeYoung, K. H., Park EunJung, P. E., Joe EunHye, J. E., & Jou Ilo, J. I. (2003). Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia.
Ambegaokar, S. S., Wu, L., Alamshahi, K., Lau, J., Jazayeri, L., Chan, S.,& Timiras, P. S. (2003). Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuroendocrinology Letters, 24(6), 469-469.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Prakash Pralhad Sarwade, Santosh Kumar S.R., Yuvraj ., Rohit Kumar, Navin Chandra Pant, Kavita Narayan Gaisamudre (Sarwade)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
AUTHORS WHO PUBLISH WITH THIS JOURNAL AGREE TO THE FOLLOWING TERMS:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).