Formulation A Review on Recent Success in Cancer Nanomedicine

Authors

  • S. N.Bodkhe Department ofPharmaceutics, Anuradha College Of Pharmacy, Chikhali, Dist- Buldhana, (MS), India 2Principal
  • R.U. Gadhave Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India
  • S.S. Rothe Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India
  • A.A. Sheikh Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India
  • K.R. Biyani Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

DOI:

https://doi.org/10.22270/ajprd.v11i3.1251

Keywords:

Nanoparticles, Bioavailability, Chemotherapy, Nanodrug, Immunotherapy, Cancer.

Abstract

Cancer continues to be one of the most difficult global healthcare problems. Although there is a large library of drugs that can be used in cancer treatment, the problem is selectively killing all the cancer cells while reducing collateral toxicity to healthy cells. There are several biological barriers to effective drug delivery in cancer such as renal, hepatic, or immune clearance. Nanoparticles loaded with drugs can be designed to overcome these biological barriers to improve efficacy while reducing morbidity. The pathological processes of cancer are complex. Current methods used for chemotherapy have various limitations, such as cytotoxicity, multi-drug resistance, stem-like cells growth, and lack of specificity. Nanomedicine plays an important role in these evolving tumor treatment modalities. We discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine. This highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients. This review discusses the current use of clinically approved nanomedicines, the investigation of nanomedicines in clinical trials, and the challenges that may hinder development of the nanomedicinesfor cancer treatment.

 

Downloads

Download data is not yet available.

Author Biographies

S. N.Bodkhe, Department ofPharmaceutics, Anuradha College Of Pharmacy, Chikhali, Dist- Buldhana, (MS), India 2Principal

Department ofPharmaceutics, Anuradha College Of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

 

R.U. Gadhave, Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

S.S. Rothe, Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

 

A.A. Sheikh, Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

K.R. Biyani, Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

Department of Pharmaceutics, Anuradha College of Pharmacy, Chikhali, Dist- Buldhana, (MS), India

References

1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A Colorectal cancer statistics. CA Cancer J Clin 2017; 67(3):177–193.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin2021;71:209–49. doi: 10.3322/caac.21660.
3. Perez-Herrero E, Fernandez-Medarde A. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur J Pharm Biopharm 2015; 93:52–79. doi: 10.1016/j.ejpb.2015.03.018.
4. BaumannM, Krause M, Hill R. Exploring the Role of Cancer Stem Cellsin Radioresistance. Nat Rev Cancer 2008; 8:545–54. doi: 10.1038/nrc2419.
5. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical
6. applications. J Control Release 200:138–157.
7. Sinha R, Kim GJ, Nie S, Shin DMNanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8): 2006;1909–1917.
8. Albanese A, Tang PS, Chan WC 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.
9. Perez-Herrero E, Fernandez-Medarde A. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur J Pharm Biopharm 2015; 93:52–79. doi: 10.1016/j.ejpb.2015.03.018.
10. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina- Mello A Nanomedicine applied to translational oncology: afuture perspective on cancer treatment. Nanomed Nanotechnol Biol Med 2016;12(1):81–103.
11. Ali ES, Sharker SM, Islam MT, Khan IN, Shaw S, Rahman MA, et al. Targeting Cancer Cells With Nanotherapeutics and Nanodiagnostics: Current Status and Future Perspectives. Semin Cancer Biol (2021) 69:52– 68. doi: 10.1016/j.semcancer.2020.01.011.
12. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and Challenges Towards Targeted Delivery of Cancer Therapeutics. Nat Commun 2018;9:1410. doi: 10.1038/s41467-018-03705-y.
13. Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-Assembled Targeted Nanoparticles: Evolution of Technologies and Bench to BedsideTranslation. Acc Chem Res 2011; 44:1123–34. doi: 10.1021/ar200054n 2.
14. Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance ofnanoparticle shape in cancer drug delivery. Expert Opini Drug Deliv 12(1):129–142.
15. Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL et al Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 2010; 99(5):1342–1349.
16. Locatelli E, Franchini MC (2012) Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res 14(12):1.
17. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 2012; 161(2):505–522.
18. von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BY Breaking down the barriers to precision cancer nanomedicine. Trends 2017.
19. Biotechnol 35(2):159–171. Cho K, Wang X, Nie S, Chen ZG, Shin DM Therapeutic nanoparticlesfor drug delivery in cancer. Clin Cancer Res 2008; 14(5):1310–1316.
20. Gao W, Chan JM, Farokhzad OC pH-responsive nanoparticles fordrug delivery. Mol Pharm 7(6):1913–192014. Yang J, Duan Y, Zhang X, Wang Y, Yu A (2016) Modulating the cellularmicroenvironment with disulfide-containing nanoparticles as an auxiliarycancer treatment strategy. J Mater Chem B 2010; 4(22):3868–3873.
21. Balendiran GK, Dabur R, Fraser D, The role of glutathione incancer. Cell Biochem Funct 2004; 22(6):343–352.
22. Chen K-J, Liang H-F, Chen H-L, Wang Y, Cheng P-Y, Liu H-L et alA thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 2012; 7(1):438–446.
23. Wang L, Shi C, Wright FA, Guo D, Wang X, Wang D et al Multifunctional telodendrimer nanocarriers restore synergy of bortezomib and doxorubicin in ovarian cancer treatment. Can Res 2017; 77(12):3293–3305.
24. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S et al Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7(2):994–1005.
25. Ahmed N, Fessi H, Elaissari A Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012; 17(17):928–934.
26. Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S et al Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010; 62(11):1094–1124.
27. Alley SC, Okeley NM, Senter PD Antibody–drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 2010; 14(4):529–537.
28. Senter PD Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 2009; 13(3):235–244.
29. Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E et al Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev ™ Ther Drug Carrier Syst 2009; 26(6):523–580.
30. Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J et al RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 2013; 10(9):3366–3374.
31. Hoare TR, Kohane DS Hydrogels in drug delivery: progress and challenges. Polymer 2008; 49(8):1993–2007.
32. Gutierrez, A. A., Lemoine, N. R., and Sikora, K. Gene Therapy for Cancer. Lancet 339, 1992; 715–721. doi:10.1016/0140-6736(92)90606-4.
33. Rui, Y.,Wilson, D. R., and Green, J. J. Non-Viral Delivery to Enable Genome Editing. Trends Biotechnol. 37, 2019; 281–293. doi:10.1016/j.tibtech.2018.08.010.
34. Lee, E. Y. H. P., and Muller, W. J. Oncogenes and Tumor Suppressor Genes. Cold Spring Harb. Perspect. Biol. 2, 2010; a003236. doi:10.1101/cshperspect.a003236.
35. Álvarez-Garcia, V., Tawil, Y.,Wise, H. M., and Leslie, N. R. Mechanisms of PTEN Loss in Cancer: It’s All about Diversity. Seminars Cancer Biol. 59, 2019; 66–79. doi:10.1016/j.semcancer.2019.02.001.
36. Lacroix, M., Riscal, R., Arena, G., Linares, L. K., and Le Cam, L. Metabolic Functions of the Tumor Suppressor P53: Implications in Normal Physiology, Metabolic Disorders, and Cancer. Mol. Metab. 33, 2020; 2–22. doi:10.1016/j.molmet. 2019.10.002.
37. Zhao, F., Tian, J., An, L., and Yang, K. Prognostic Utility of Gene Therapy with Herpes Simplex Virus Thymidine Kinase for Patients with High-Grade Malignant Gliomas: A Systematic Review and Meta Analysis. J. Neurooncol. 118, 2014; 239–246. doi:10.1007/s11060-014-1444-z.
38. Sukumar, U. K., Rajendran, J. C. B., Gambhir, S. S., Massoud, T. F., and Paulmurugan, R. SP94-Targeted Triblock Copolymer Nanoparticle Delivers Thymidine Kinase-P53-Nitroreductase Triple Therapeutic Gene and Restores Anticancer Function Against Hepatocellular Carcinoma In Vivo. ACS Appl. Mat. Interfaces 12, 2020; 11307–11319. doi:10.1021/acsami.9b20071.
39. Ding, F., Zhang, H., Cui, J., Li, Q., and Yang, C.Boosting Ionizable Lipid Nanoparticle-Mediated In Vivo mRNA Delivery Through Optimization of Lipid Amine-Head Groups. Biomater. Sci. 9, 2021; 7534–7546. doi:10.1039/d1bm00866h.
40. Li, J., Wang, W., He, Y., Li, Y., Yan, E. Z., Zhang, K., et al. Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. ACS Nano 11, 2017; 2531–2544. doi:10.1021/acsnano.6b08447.
41. Forterre, A. V.,Wang, J.-H., Delcayre, A., Kim, K., Green, C., Pegram, M. D., et al. Extracellular Vesicle-Mediated In Vitro Transcribed mRNA Delivery for Treatment of HER2+ Breast Cancer Xenografts in Mice by Prodrug CB1954 Without General Toxicity. Mol. Cancer Ther. 19, 2020; 858–867. doi:10.1158/1535- 7163.mct-19-0928.
42. Subhan, M. A., and Torchilin, V. P. Efficient Nanocarriers of siRNA Therapeutics for Cancer Treatment. Transl. Res. 214, 62–91. doi:10.1016/j.trsl. 2019.07.006.
43. Han, Q., Xie,Q. R., Li, F., Cheng, Y.,Wu, T., Zhang, Y., et al. Targeted Inhibition of SIRT6 via Engineered Exosomes Impairs Tumorigenesis and Metastasis in Prostate Cancer. Theranostics 11, 2021; 6526–6541. doi:10.7150/thno.53886.
44. Krishn, S. R., Garcia, V., Naranjo, N. M., Quaglia, F., Shields, C. D., Harris, M. A.,et al. Small Extracellular Vesicle-Mediated ITGB6 siRNA Delivery Downregulates the αVβ6 Integrin and Inhibits Adhesion and Migration of Recipient Prostate Cancer Cells. Cancer Biol. Ther. 23, 2022; 173–185. doi:10.1080/ 15384047.2022.2030622.
45. Shen, Z., Zhou, L., Zhang, C., and Xu, J. Reduction of Circular RNA Foxo3 Promotes Prostate Cancer Progression and Chemoresistance to Docetaxel. Cancer Lett. 468, 2020; 88–101. doi:10.1016/j.canlet.2019.10.006.
46. Yin, H., Yuan, X., Luo, L., Lu, Y., Qin, B., Zhang, J., et al. Appropriate Delivery of the CRISPR/Cas9 System Through the Nonlysosomal Route: Application for Therapeutic Gene Editing. Adv. Sci. 7, 2020; 1903381. doi:10.1002/ advs.201903381.
47. Wang, J., Li, Y., and Nie, G. Multifunctional Biomolecule Nanostructures for Cancer Therapy. Nat. Rev. Mater. 6, 2021b; 766–783. doi:10.1038/s41578-021- 00315-x.
48. Igarashi, Y., and Sasada, T. Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J. Immunol. Res. 2020, 5825401. doi:10.1155/2020/5825401.
49. Saxena, M., van der Burg, S. H., Melief, C. J. M., and Bhardwaj, N. Therapeutic Cancer Vaccines. Nat. Rev. Cancer 21, 2021; 360–378. doi:10.1038/ s41568-021-00346-0.
50. Liu, J., Miao, L., Sui, J., Hao, Y., and Huang, G. Nanoparticle Cancer Vaccines: Design Considerations and Recent Advances. Asian J. Pharm. Sci. 15, 20202a; 576–590. doi:10.1016/j.ajps.2019.10.006.
51. Zhu, G., Zhang, F., Ni, Q., Niu, G., and Chen, X. Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS Nano11,2017a;2387–2392. doi:10.1021/ acsnano.7b00978.

Published

2023-06-15

How to Cite

N.Bodkhe, S., Gadhave, R., Rothe, S., Sheikh, A., & Biyani, K. (2023). Formulation A Review on Recent Success in Cancer Nanomedicine. Asian Journal of Pharmaceutical Research and Development, 11(3), 38–44. https://doi.org/10.22270/ajprd.v11i3.1251