Repurposed Drugs and Alternate Therapeutic Possibilities for Challenges Posed By Covid-19

  • Khushbu Verma Sai Meer College of Pharmacy
  • Neha Kapoor Department of Chemistry, Hindu College, University of Delhi, Delhi-110007,India.
  • Lamha Kumar Department of Botany, Hindu College, University of Delhi, Delhi-110007, India.
  • Neelam Yadav Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya-224001, India
  • Ghorai Soma Mondal Department of Zoology, Hindu College, University , Delhi- of Delhi110007, India.

Abstract

Pandemics like SARS-CoV-2 and its associated illness named COVID-19 (coronavirus disease 2019) have become a regular occurrence in the past recent decades. Though, novel Coronavirus devastated human lives, its earlier cousins SARS-CoV1, MERS and lesser known infections like 229E, NL63, OC43, HK01 were less threatening.  Humankind should brace up towards identifying, managing and finding a suitable cure to prevent incidence of such deadly diseases.it is a well-known fact that viral diseases can be curbed only with vaccines. In this respect, the world has witnessed both the design and delivery of vaccines against SARS-CoV2 in a record time. Candidates for Vaccines designed vary from targeting proteins or nucleic acids (DNA and RNA) of the virus, with or without adjuvants with a potency to generate memory. Though, this has been lauded by the entire humankind, there is still the need for other therapeutics to control and treat COVID-19. Therapeutic Drugs are inexhaustible group of molecules that showed some promise in diagnosis, treatment or prevention of SARS-CoV-2 but provide no form of ‘memory’. In this Review, we summarize the current knowledge on the therapeutic options other than vaccines or licensed antiviral drugs that can be repurposed to be considered for the treatment and prevention of the SARS-CoV-2 virus.


 

Keywords: SARS-CoV-2, Therapeutics, Drug Repurposing, pharmacophores, antivirals, diagnostics

Downloads

Download data is not yet available.

Author Biographies

Neha Kapoor, Department of Chemistry, Hindu College, University of Delhi, Delhi-110007,India.

Department of Chemistry, Hindu College, University of Delhi, Delhi-110007,India.

Lamha Kumar, Department of Botany, Hindu College, University of Delhi, Delhi-110007, India.

Department of Botany, Hindu College, University of Delhi, Delhi-110007, India.

Neelam Yadav, Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya-224001, India

Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya-224001, India

Ghorai Soma Mondal, Department of Zoology, Hindu College, University , Delhi- of Delhi110007, India.

Department of Zoology, Hindu College, University , Delhi- of Delhi110007, India.

References

1. Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020; 12(2):244.doi: 10.3390/v12020244.
2. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020;30(7):1346-51.e2.doi: 10.1016/j.cub.2020.03.022.
3. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020; 19:100682. doi: 10.1016/j.genrep.2020.100682.
4. Asai A, Konno M, Ozaki M, Otsuka C, Vecchione A, Arai T, et al. COVID-19 drug discovery using intensive approaches. Internatl J Mol Sci. 2020;21(8):2839doi: 10.3390/ijms21082839.
5. Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery.Pharmacol Rev.2014;66(1):334-395.Published 2013 Dec 31. doi:10.1124/pr.112.007336.
6. Omolo CA, Soni N, Fasiku VO, Mackraj I, Govender T. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol. 2020;Sep 15;883:173348. doi: 10.1016/j.ejphar.2020.173348.
7. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol.2020;92(4):418-423. doi: 10.1002/jmv.25681.
8. Cheng MP, Lee TC, Tan DHS, Murthy S. Generating randomized trial evidence to optimize treatment in the COVID-19 pandemic. Can Med Assoc J. 2020. 192:E405–E407. DOI: https://doi.org/10.1503/cmaj.200438.
9. Cohen J. Vaccine designers take first shots at COVID-19. Science. 2020; 368(6486):14-16. doi: 10.1126/science.368.6486.14.
10. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med. 2020; Ahead of Print. Jun 1;28(2):174-184.
11. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, etalInsights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. BiochimBiophysActaMol Basis Dis. 2020; 1866(10):165878. doi: 10.1016/j.bbadis.2020.165878.
12. Liang Y, Wang ML, Chien CS, Yarmishyn AA, Yang YP, Lai WY, et al. Highlight of immune pathogenic response and hematopathologic effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 infection.; Front. Immunol.2020; 11:1022.https://doi.org/10.3389/fimmu.2020.01022.
13. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020; Jan-Feb;52(1):56-65. doi: 10.4103/ijp.IJP_115_20.
14. Okada M, Takemoto Y, Okuno Y, Hashimoto S, Yoshida S, Fukunaga Y, et al. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice.Vaccine. 2005; 23(17-18):2269-72. doi: 10.1016/j.vaccine.2005.01.036.
15. Chang CK, Jeyachandran S, Hu NJ, Liu CL, Lin SY, Wang YS et al. Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein. MolBiosyst.2016; 12(1):59-66. doi: 10.1039/c5mb00582e.
16. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8.
17. Kushwaha, P. K., Kumari, N., Nayak, S., Kishor, K., Sharon, A. Structural Basis for the Understanding of Entry Inhibitors Against SARS Viruses. Current Medicinal Chemistry.2021.
18. Shaw ML. The Next Wave of Influenza Drugs.ACS Infect Dis. 2017; Oct 13; 3(10):691-694. doi: 10.1021/acsinfecdis.7b00142.
19. Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Ménard R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol. 2005; 79(24):15199-15208. doi:10.1128/JVI.79.24.15199-15208.2005.
20. Thiel V, Ivanov KA, Putics Á, Hertzig T, Schelle B, Bayer S, et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003; 84(Pt 9):2305-2315. doi: 10.1099/vir.0.19424-0.
21. Montastruc JL, Benevent J, Montastruc F, Bagheri H, Despas F, Lapeyre-Mestre M, Sommet A. What is pharmacoepidemiology? Definition, methods, interest and clinical applications.Therapie. 2019; 74(2):169-174. doi: 10.1016/j.therap.2018.08.001.
22. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004; 3(8):673-83. doi: 10.1038/nrd1468.
23. Weinberg MS, Patrick RE, Schwab NA, Owoyemi P, May R, McManus AJ, et al. Clinical Trials and Tribulations in the COVID-19 Era. Am J Geriatr Psychiatry. 2020; 28(9):913-920. doi: 10.1016/j.jagp.2020.05.016. Epub 2020 May 19. PMID: 32507686; PMCID: PMC7236727.
24. Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev PanamSaludPublica. 2020; 44:e40. doi:10.26633/RPSP.2020.40.
25. Lythgoe MP, Middleton P. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci. 2020; 41(6):363-382. doi: 10.1016/j.tips.2020.03.006.
26. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. PNAS.2020;117 (12): 6771-6776.https://doi.org/10.1073/pnas.1922083117.
27. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382:929-936
DOI: 10.1056/NEJMoa2001191.
28. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020; 295(15):4773-4779. doi: 10.1074/jbc.AC120.013056.
29. Brown AJ, Won JJ, Graham RL, Dinnon KH 3rd, Sims AC, Feng JY et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res. 2019; 169:104541. doi: 10.1016/j.antiviral.2019.104541.
30. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020; 55(5):105951. doi:10.1016/j.ijantimicag.2020.105951.
31. Abuo-Rahma GE, Mohamed MF, Ibrahim TS, Shoman ME, Samir E, Abd El-Baky RM. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances. 2020;10(45):26895-916.doi: 10.1039/D0RA05821A
32. Nojomi, M., Yassin, Z., Keyvani, H., Makiani, M.J., Roham, M., Laali, A., Dehghan, N., Navaei, M. and Ranjbar, M., 2020. Effect of Arbidol (Umifenovir) on COVID-19: a randomized controlled trial. BMC infectious diseases, 20(1), pp.1-10.doi: 10.1186/s12879-020-05698-w.
33. De Clercq E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections.Chem Asian J. 2019; Nov 18;14(22):3962-3968. doi: 10.1002/asia.201900841.
34. Andersen PI, Ianevski A, Lysvand H, Vitkauskiene A, Oksenych V, Bjørås M, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Internatl J Infec Dis. 2020; 93:268-76. doi: 10.1016/j.ijid.2020.02.018
35. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020. 725:138277. doi: 10.1016/j.scitotenv.2020.138277.
36. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome.Lancet. 2003. 361(9366):1319-25. doi: 10.1016/s0140-6736(03)13077-2.
37. Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses—drug discovery and therapeutic options.Nat Rev Drug Discov.2016. 15:327–47. https://doi.org/10.1038/nrd.2015.37.
38. Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L et al. Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis. 2015; 212(12):1904-13. doi: 10.1093/infdis/jiv392.
39. Treatment of Severe Acute Respiratory Syndrome with Lopinavir/Ritonavir:AMulticentre Retrospective Matched Cohort Study - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/14660806/ [Accessed 4 June 2020].
40. De Meyer S, Bojkova D, Cinatl J, et al. Lack of antiviral activity of darunavir against SARS-CoV-2. Int J Infect Dis. 2020; 97:7-10. doi:10.1016/j.ijid.2020.05.085.
41. Chen J, Xia L, Liu L, Xu Q, Ling Y, Huang D et al. (2020) Antiviral Activity and Safety of Darunavir/Cobicistat for the Treatment of COVID-19. Open Forum Infect Dis 7(7): ofaa241. https://doi.org/10.1093/ofid/ofaa241.
42. Guy RK, DiPaola RS, Romanelli F, Dutch RE.Rapid repurposing of drugs for COVID-19.Science. 2020; 368(6493):829-830. doi: 10.1126/science.abb9332.
43. Pereira BB. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. J Toxicol Environ Health B Crit Rev. 2020; 23(4):177-181. doi: 10.1080/10937404.2020.1752340.
44. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. BiochemBiophys Res Commun.2004; 323(1):264-268. doi:10.1016/j.bbrc.2004.08.085.
45. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).Clin Infect Dis.2020; 71(15):732-739. doi: 10.1093/cid/ciaa237.
46. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes MetabSyndr.2020; 14(3):241-246. doi: 10.1016/j.dsx.2020.03.011.
47. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018; 14(8):1435-1455. doi: 10.1080/15548627.2018.1474314.
48. Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020; 55(3):105923.doi:10.1016/j.ijantimicag.2020.105923.
49. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949.

50. Arabi YM, Alothman A, Balkhy HH, Al-Dawood A, AlJohani S, Al Harbi S, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials.2018; 19(1):1-3. doi: 10.1186/s13063-017-2427-0.
51. Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy ClinImmunol. 2020; 146(1):137-146.e3. doi: 10.1016/j.jaci.2020.05.019.
52. Bechman K, Subesinghe S, Norton S, Atzeni F, Galli M, Cope AP et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumat (Oxford). 2019; 58(10):1755-1766. doi: 10.1093/rheumatology/kez087. PMID: 30982883.
53. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020; Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4.
54. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infec. 2020; 81(2): 318–356. https://doi.org/10.1016/j.jinf.2020.04.017.
55. Monpara JD, Sodha SJ, Gupta PK. COVID-19 associated complications and potential therapeutic targets. Eur J Pharmacol. 2020; 886:173548. doi:10.1016/j.ejphar.2020.173548.
56. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA.2020; 323(18):1824–1836. doi:10.1001/jama.2020.6019.
57. 57.Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020; 80(6):607-613. doi:10.1016/j.jinf.2020.03.037.
58. Lu S, Zhou Q, Huang L, Shi Q, Zhao S, Wang Z et al. Effectiveness and safety of glucocorticoids to treat COVID-19: a rapid review and meta-analysis. Ann Transl Med. 2020; 8(10):627. doi:10.21037/atm-20-3307.
59. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. The Lancet Rheuma. 2020;2(8):e474-84.https://doi.org/10.1016/ S2665-9913(20)30173-9.
60. Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020; 19(7):102568. doi: 10.1016/j.autrev.2020.102568.
61. Wen YC, Hsiao FY, Chan KA, Lin ZF, Shen LJ, Fang CC. Acute Respiratory Infection and Use of Nonsteroidal Anti-Inflammatory Drugs on Risk of Acute Myocardial Infarction: A Nationwide Case-Crossover Study. J Infect Dis. 2017; 215(4):503-509. doi: 10.1093/infdis/jiw603.
62. Wen YC, Hsiao FY, Lin ZF, Fang CC, Shen LJ. Risk of stroke associated with use of nonsteroidal anti-inflammatory drugs during acute respiratory infection episode. Pharmacoepidemiol Drug Saf. 2018; 27(6):645-651. doi: 10.1002/pds.4428.
63. Zhang X, Donnan PT, Bell S, Guthrie B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol. 2017; 18(1):256. doi: 10.1186/s12882-017-0673-8.
64. Clavé S, Rousset-Rouvière C, Daniel L, Tsimaratos M. The Invisible Threat of Non-steroidal Anti-inflammatory Drugs for Kidneys. Front Pediatr. 2019; Dec 17;7:520. doi: 10.3389/fped.2019.00520.
65. WHO Clarifies Guidance on Ibuprofen, Says There’s No Evidence It Can WorsenCOVID-19 | CBC News n.d. https://www.cbc.ca/news/health/ibuprofen-covid-19-novel-coronavirus-1.5501496 [Accessed 4 June 2020].
66. Liu YC, Kuo RL, Shih SR. COVID-19: The first documented coronavirus pandemic in history. Biomed J. 2020; 43(4):328-33. https://doi.org/10.1016/j.bj.2020.04.007.
67. Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care.2020; 24, 91.https://doi.org/10.1186/s13054-020-2818-6.
68. Luo H, Tang QL, Shang YX, Liang S, Yang M, Robinson N, et al. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chin J Integr Med. 2020; 26(4):243-250. doi:10.1007/s11655-020-3192-6.
69. Otake T, Mori H, Morimoto M, Ueba N, Sutardjo S, Kusumoto IT, et al. Screening of Indonesian plant extracts for anti-human immunodeficiency virus—type1 (HIV-1) activity. Phyther Res.1995; 9:6–10.https://doi.org/10.1002/ptr.2650090103.
70. Amber R, Adnan M, Tariq A, Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and relatedsymptoms. J Pharm Pharmacol. 2017; 69:109–22.doi: 10.1111/jphp.12669
71. 71.Kapoor N, Ghorai SM, Kushwaha PK, Shukla R, Aggarwal C, Bandichhor R. Plausible mechanisms explaining the role of cucurbitacins as potential therapeutic drugs against coronavirus 2019. Inform Med Unlocked 2020; 21:100484. doi: 10.1016/j.imu.2020.100484.
72. Hussain I, Hussain A, Alajmi MF, Rehman MT, Amir S. Impact of repurposed drugs on the symptomatic COVID-19 patients. J Infect Public Health. 2021; 14(1):24-38. doi: 10.1016/j.jiph.2020.11.009.
73. Oyagbemi AA, Ajibade TO, Aboua YG, Gbadamosi IT, Adedapo ADA, Aro AO, et al. Potential health benefits of zinc supplementation for the management of COVID‐19 pandemic. Journal of Food Biochemistry; 2021. 45(2), p.e13604. doi: 10.1111/jfbc.13604
74. Madariaga ML, Guthmiller JJ, Schrantz S, Jansen MO, Christensen C, Kumar M, et al. Clinical predictors of donor antibody titre and correlation with recipient antibody response in a COVID‐19 convalescent plasma clinical trial. J Int Med. 2020;289(4). DOI:10.1111/joim.13185
75. Salazar E, Perez KK, Ashraf M, Chen J, Castillo B, Christensen PA et al. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. Am J Pathol. 2020; 190(8): 1680–1690. doi: 10.1016/j.ajpath.2020.05.014.
76. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentrerandomised controlled trial (PLACID Trial). Bmj. 2020; 371. https://doi.org/10.1136/bmj.m3939
77. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229):1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
78. Kefayat A, Ghahremani F. Low dose radiation therapy for COVID-19 pneumonia: A double-edged sword. RadiotherOncol. 2020; 147:224-225.doi: 10.1016/j.radonc.2020.04.026.
79. 79.Arenas M, Sabater S, Hernández V, Rovirosa A, Lara PC, Biete A, Panés J. Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. StrahlentherOnkol. 2012; 188(11):975-81. doi: 10.1007/s00066-012-0170-8.
80. Kirkby C, Mackenzie M. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia? RadiotherOncol, 2020; 147:221. doi: 10.1016/j.radonc.2020.04.004.
81. Keller S, Müller K, Kortmann RD et al. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study. RadiatOncol. 2013; 8: 29.https://doi.org/10.1186/1748-717X-8-29.
82. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases.Nat Rev Drug Discov. 2017; 16(12):843-862. doi: 10.1038/nrd.2017.201.
83. Rasmussen SA, Jamieson DJ. Coronavirus Disease 2019 (COVID-19) and Pregnancy: Responding to a Rapidly Evolving Situation. Obstet Gynecol.2020; 135(5):999-1002. doi:10.1097/AOG.0000000000003873.
Statistics
46 Views | 41 Downloads
How to Cite
Verma, K., Kapoor, N., Kumar, L., Yadav, N., & Mondal, G. (2021). Repurposed Drugs and Alternate Therapeutic Possibilities for Challenges Posed By Covid-19. Asian Journal of Pharmaceutical Research and Development, 9(5), 78-86. https://doi.org/https://doi.org/10.22270/ajprd.v9i5.996