Drug Discovery of Griseofulvin : A Review

Authors

  • Rinda Jumiati School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147
  • Boy Chandra School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147
  • Dan Ridho Asra School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

DOI:

https://doi.org/10.22270/ajprd.v9i4.993

Keywords:

Griseofulvin, Dermatophyte, Toxicity.

Abstract

Background: Griseofulvin is a fungistatic antifungal drug used to treat dermatophytosis. Dermatophytes that      are often found include Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Epidermophyton floccosum.

Purpose: This review article aims to discuss the drug discovery review of griseofulvin.

Data Source: The author created this review article using the literature study method relevant to the purpose of the review. Sources of information from national journals and international journals  that are accessed through online sites such as Google Scholar, Research Gate, Science Direct, Springer Link, and NCBI. Key words were used to find the journals, namely griseofulvin, dermatophyte, toxicity.

Conclusion: The conclusion of this article is that griseofulvin is used as an antifungal drug containing chlorine from Penicillium griseofulvum isolated      against mycelium fungus. This drug is non-toxic, so it is effective and safe to fight various types of fungal infections of the skin such as tinea capitis and remains the drug of choice for dermatophytes.

 

Downloads

Download data is not yet available.

Author Biographies

Rinda Jumiati, School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

Boy Chandra, School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

Dan Ridho Asra, School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

References

1. Aljofan M, Berdigaliyev N. An Overview of Drug Discovery and Development. Future Med Chem, 2020; 12(10):939–47.
2. Minarni A. Uji Daya Hambat Beberapa Jenis Obat Antijamur Pada Jamur Yang Di Isolasi Dari Kuku Kaki. Jurnal Media Analis Kesehatan, 2020; 11(2):119–126.
3. Supenah P. Indikasi Jamur Dermatofita pada Jari kaki Pekerja Batu Alam di Desa Bobos Kecamatan Dukupuntang Kabupaten Cirebon. Health Information: Jurnal Penilitian, 2020; 12(1):38–45.
4. Hairunnisa H. Sulitnya Menemukan Obat Baru di Indonesia. Majalah Farmasetika, 2019; 4(1):16–21.
5. Oxford AE, Raistrick H, Simonart P. Studies in the Biochemistry of Micro-Organisms. Biochemical Journal, 1939; 33(2):240–248.
6. Grove JF, McGowan JC. Identity of Griseofulvin and “Curling-Factor” . Nature, 1947; 160(4069):574.
7. Brian PW, Curtis PJ, Hemming HG. A Substance Causing Abnormal Developmet of Fungal Hyphae Produced by Penicillium Janczewskii Zal. Transactions of the British Mycological Society, 1947; 32(1):30–33.
8. Tang Y, Cacho RA, Chooi YH, Zhou H. Complexity Generation in Fungal Polyketide Biosynthesis: A Spirocycle-Forming P450 in the Concise Pathway to the Antifungal Drug Griseofulvin. ACS Chemical Biology, 2013; 8(10):1–33.
9. Lin C, Symchowicz S. Absorption, Distribution, Metabolism, and Excretion of Griseofulvin in Man and Animals. Drug Metabolisme Reviews, 1975; 4(1):75–95.
10. Bedford C, Busfield D, Child KJ, Mac Gregor I, Sutherland P, Tomich EG. Studies on the Biological Disposition of Griseofulvin, an Oral Antifungal Agent. AMA Archives of Dermatology, 1960;81(5):735–745.
11. Singh K. In Silico Studies on the Effect of Griseofulvin on Tubulin Protein of Cryptococcus neoformans and its In Vitro Validation. Journal Microbiology, Biotechnology and Food Sciences, 2017; 6(6):1280–1283. doi: 10.15414/jmbfs.2017.6.6.1280-1283
12. Panda D, Rathinasamy K, Jindal B, Asthana J, Singh P, Balaji P V. Griseofulvin Stabilizes Microtubule Dynamics, Activates P53 and Inhibits The Proliferation of MCF-7 Cells Synergistically with Vinblastine. BMC Cancer, 2010; 10(213):1–13. doi: 10.1186/1471-2407-10-213
13. Zhong N, Chen H, Zhao Q, Wang H, Yu X, Eaves AM, et al. Effects of Griseofulvin on Apoptosis Through Caspase-3- and Caspase-9-Dependent Pathways in K562 Leukemia Cells: An In Vitro Study. Current Therapeutic Research, 2010; 71(6):384–397. doi: 10.1016/j.curtheres.2010.12.004
14. Schmidt-Wolf IGH, Kim Y, Alpmann P, Blaum-Feder S, Krämer S, Endo T. In vivo Efficacy of Griseofulvin Against Multiple Myeloma. Leukimia Research, 2011; 35(8):1070–1073. doi: 10.1016/j.leukres.2010.10.008
15. Sorrentino L, Capasso F, Di Rosa M. Anti-Inflammatory Properties of Griseofulvin. Agents and Actions, 1977; 7(1):157–162.
16. Kimura T, Fujioka Y, Metsugi Y, Ogawara K ichi, Higaki K. Evaluation of In Vivo Dissolution Behavior and GI Transit of Griseofulvin, a BCS Class II Drug. International Journal of Pharmaceutics, 2008; 352(1–2):36–43.
17. Kitchin RM, Curry PT, Reed RN, Martino RM. Induction of Sister-Chromatid Exchanges In Vivo in Mice by the Mycotoxins Sterigmatocystin and Griseofulvin. Mutation Research, 1984; 137(2–3):111–115.
18. Paget GE, Walpole AL. The Experimental Toxicology of Griseofulvin. AMA Archives of Dermatology, 1960;81(5):750–757.
19. Coyne C, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-HER2/neu] in Combination with Griseofulvin Against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3). Medicinal Chemistry, 2013; 3(2):210–223. doi: 10.4172/2161-0444.1000141
20. Marto J, Vitor C, Guerreiro A, Severino C, Eleutério C, Ascenso A, Simoes S. Ethosomes for Enhanced Skin Delivery of Griseofulvin. Colloids and Surfaces B: Biointerfaces, 2016;146:616–623. http://dx.doi.org/10.1016/j.colsurfb.2016.07.021
21. Souza PFN, Lima PG, Freitas CDT, Sousa DOB, Neto NAS, Dias LP, et al. Antidermatophytic Activity of Synthetic Peptides: Action Mechanisms and Clinical Application as Adjuvants to Enhance the Activity and Decrease the Toxicity of Griseofulvin. Mycoses, 2020; 63(9):979–992. doi: 10.1111/MYC.13138
22. Khoza S, Moyo I, Ncube D. Comparative Hepatotoxicity of Fluconazole, Ketoconazole, Itraconazole, Terbinafine, and Griseofulvin in Rats. Journal of Toxicology, 2017. https://doi.org/10.1155/2017/6746989
23. Klein MF, Beall JR. Griseofulvin: A Teratogenic Study. Science, 1972; 175(4029):1483–1484.
24. Aggarwal N, Goindi S, Mehta SD. Preparation and Evaluation of Dermal Delivery System of Griseofulvin Containing Vitamin E-TPGS as Penetration Enhancer. AAPS PharmSciTech, 2012; 13(1):67–74. DOI: 10.1208/s12249-011-9722-y
25. Payghan S., Jadhav C., Kate V. Stability Study of Griseofulvin in Non Aqueous Microemulsion System. Asian Journal Biomedical and Pharmaceutical Sciences, 2014; 4(35):71–75.
26. Goindi S, Aggarwal N, Khurana R. Formulation, Characterization and Evaluation of an Optimized Microemulsion Formulation of Griseofulvin for Topical Application. Colloids and Surfaces B: Biointerfaces, 2013; 105:158–166.
27. Sopyan I, Gozali D, Paramudya E. Formulation and Stability Testing of Microemulsion Griseovulfin. Indonesian Journal of Pharmaceutics, 2020;2(2):34–42. https://doi.org/10.24198/idjp.v2i2.27574
28. Ahmed IS, Aboul-Einien MH. In vitro and In Vivo Evaluation of a Fast-Disintegrating Lyophilized Dry Emulsion Tablet Containing Griseofulvin. European Journal of Pharmaceutical Sciences, 2007;32(1):58–68. doi: 10.1016/j.ejps.2007.05.114
29. Lee CS, Tan YJ, Er HM, Lim WH, Wong SF. In-vitro Evaluation of Griseofulvin Loaded Lipid Nanoparticles for Topical Delivery. Journal of Drug Delivery Science and Technology, 2016; 31:1–10. http://dx.doi.org/10.1016/j.jddst.2015.11.002
30. Ong SGM, Ming LC, Lee KS, Yuen KH. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics, 2016;8(3)25. doi: 10.3390/pharmaceutics8030025
31. Salimi A, Zadeh BSM, Rezvan Amini. Novel Super Saturated Self-Emulsifying System for Oral Delivery of Griseofulvin: Design, Preparation and ex-vivo Intestinal Permeability. Journal of Reports in Pharmaceutical Sciences, 2017;6(2):180–190.
32. Mbah CC, Builders PF, Agubata CO, Attama AA. Development of Ethosomal Vesicular Carrier for Topical Application of Griseofulvin: Effect of Ethanol Concentration. Journal of Pharmacy Investigation, 2019;49(1):27–36. DOI: 10.1007/s40005-017-0367-z
33. Sigfridsson K, Rydberg H, Strimfors M. Nano- and Microcrystals of Griseofulvin Subcutaneously Administered to Rats Resulted in Improved Bioavailability and Sustained Release. Drug Development and Industrial Pharmacy, 2019;45(9):1477–1486. https://doi.org/10.1080/03639045.2019.1628769
34. Dhanaraju MD, Senthil Kumaran K, Baskaran T, Sree Rama Moorthy M. Enhancement of Bioavailability of Griseofulvin by its Complexation with β-Cyclodextrin. Drug Development and Industrial Pharmacy, 1998;24(6):583–587.
35. Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced Oral Bioavailability of Griseofulvin via Niosomes. AAPS PharmSciTech, 2009;10(4):1186–1192. DOI: 10.1208/s12249-009-9325-z
36. Bilgili E, Rahman M, Ahmad S, Tarabokija J, Parker N. Spray-Dried Amorphous Solid Dispersions of Griseofulvin in HPC/Soluplus/SDS: Elucidating the Multifaceted Impact of SDS as a Minor Component. Pharmaceutics, 2020;12(3):197. doi:10.3390/pharmaceutics12030197
37. Oakes RA, Aly R, Bayles CI, Bibel DJ, Maibach HI. Topical Griseofulvin in the Treatment of Dermatophytoses. Clinical and Experimental Dermatology, 1994;19(1):43–46.
38. Tey HL, Tan ASL, Chan YC. Meta-analysis of randomized, Controlled Trials Comparing Griseofulvin and Terbinafine in the Treatment of Tinea Capitis. Journal of the American Academy of Dermatology, 2011;64(4):663–670. doi: 10.1016/j.jaad.2010.02.048
39. Mashiah J, Aleohin N, Bar J, Bar-Ilan E, Samuelov L, Sprecher E. Laboratory Monitoring During Antifungal Treatment of Paediatric Tinea Capitis. Mycoses, 2020;64(2):157–161. doi: 10.1111/MYC.13197
40. Gentles JC. Experimental Ringworm in Guinea Pigs: Oral Treatment with Griseofulvin. Nature, 1958;182(4633):476–477.
41. Grisham LM, Wilson L, Bensch KG. Antimitotic Action of Griseofulvin does not Involve Disruption of Microtubules. Nature, 1973;244(5414):294–296.
42. Chaudhuri AR, Ludueña RF. Griseofulvin: Interaction with Normal and Subtilisin-Treated Tubulin. Drug Development Research, 2001;53(1):44–49.
43. Keates RAB. Griseofulvin at Low Concentration Inhibits the Rate of Microtubule Polymerization In Vitro. Biochemical and Biophysical Research Communications, 1981;102(2):746–752.
44. Clausen MH, Petersen AB, Rønnest MH, Larsen TO. The Chemistry of Griseofulvin. Chemical Reviews, 2014;114(24):12088–12107. dx.doi.org/10.1021/cr400368e
45. Oda T. Effects of 2′-Demethoxy-2′-Propoxygriseofulvin on Microtubule Distribution in Chinese Hamster V79 Cells. J Antibiot, 2006;59(2):114–116.
46. Roth FJ, Blank H. The Bioassay of Griseofulvin in Human Stratum Corneum. AMA Archives of Dermatology, 1960;81(5):662–666.
47. Simpson TJ, Holker JSE. 13C-NMR Studies on Griseofulvin Biosynthesis and Acetate Metabolism in Penicillium patulum. Phytochemistry, 1977;16(2):229–233.
48. Rhodes A, Boothroyd B, McGonagle P, Somerfield GA. Biosynthesis of Griseofulvin: the Methylated Benzophenone Intermediates. Biochemical Journal, 1961;81(1):28–37.

Published

2021-08-15

How to Cite

Jumiati, R., Chandra, B., & Asra, D. R. (2021). Drug Discovery of Griseofulvin : A Review. Asian Journal of Pharmaceutical Research and Development, 9(4), 101–107. https://doi.org/10.22270/ajprd.v9i4.993