RECENT INSIGHTS ON PROSPECTS OF CANCER NANOTECHNOLOGY

Authors

  • Hemant K. Sharma Dean & Professor, College of Pharmacy, Sri SatyaSai University of Technology and Medical Sciences, Village-Pachama, District- Sehore, Madhya Pradesh-466001, India.
  • Manish Kumar Research Scholar, College of Pharmacy, Sri SatyaSai University of Technology and Medical Sciences, Village-Pachama, District- Sehore, Madhya Pradesh-466001, India.

DOI:

https://doi.org/10.22270/ajprd.v6i5.413

Keywords:

Cancer Nanotechnology, Liposomes, Targeted Delivery, Diagnosis, Nano-medicines.

Abstract

Cancer is an extremely multifaceted illness to appreciate, since it entails manifold cellular physiological system. The mainly general cancer treatment is limited to chemotherapy, radiation and surgery. Furthermore, the untimely credit and action of cancer relics a technological block. There is an urgent require to expand novel and originaltechnology thatcould help to define tumor margins, recognize residual tumor cells and micro metastases, and decide whether a tumor has been totally removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resis­tance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. In present study review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer.

Key-Words:Cancer Nanotechnology, Liposomes, Targeted Delivery, Diagnosis, Nano-medicines.

Downloads

Download data is not yet available.

References

1. Yang Y, Aw J, Chen K, et al. Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem Asian J. 2011; 6(6):1381–1389.
2. Gupta S, Andresen H, Stevens MM. Single-step kinase inhibitor screening using a peptide-modified gold nanoparticle platform. ChemCommun (Camb). 2011; 47(8):2249-2251.
3. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine. 2009; 4:1-7.
4. Baker JR. Dendrimer-based nanoparticles for cancer therapy. Hematology Am SocHematolEduc Program. 2009; 2009(1):708-719.
5. Svenson S, Tomalia DA. Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev. 2005;57(15):2106-2129.
6. Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expand¬ing horizon. Chem Rev. 2009;109(1):49-87.
7. Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5–6):171-185.
8. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. BiochemSoc Trans. 2007; 35(Pt 1):61-67.
9. Padilla De Jesús OL, Ihre HR, Gagne L, Fréchet JMJ, Szoka FC Jr. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem. 2002; 13(3):453-461.
10. Lai PS, Lou PJ, Peng CL, et al. Doxorubicin delivery by polyamido¬aminedendrimer conjugation and photochemical internalization for cancer therapy. J Control Release. 2007; 122(1):39-46.
11. Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) den¬drimers as delivery vehicles for the active component of the anticancer drug cisplatin. J InorgBiochem. 2011; 105(9):1115–1122.
12. Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005; 10(1):35–43.
13. Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999; 10(8):767–776.
14. Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. ProcNatlAcadSci U S A. 2006; 103(45):16649–16654.
15. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284.
16. Han G, Ghosh P, Rotello VM. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol. 2007; 620:48-56.
17. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li ZY, Xia Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J Am Chem Soc. 2006; 128(46):14776-14777.
18. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010; 12(7):2313-2333.
19. Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol. 2010; 5(6):465-472.
20. Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxali¬platin. J Am Chem Soc. 2010;132(13):4678–4684.
21. Khullar P, Singh V, Mahal A, et al. Bovine serum albumin biocon¬jugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J PhysChem C. 2012; 116(15):8834-8843.
22. Joshi P, Chakraborty S, Dey S, et al. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. J Colloid Interface Sci. 2011; 355(2):402-409.
23. Smith AM, Dave S, Nie S, True L, Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev MolDiagn. 2006;6(2):231–244.
24. Gao X, Dave SR. Quantum dots for cancer molecular imaging. Adv Exp Med Biol. 2007; 620:57-73.
25. Yu Y, Xu L, Chen J, et al. Hydrothermal synthesis of GSH-TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids Surf B Biointerfaces. 2012; 95:247-253.
26. Shen JM, Tang WJ, Zhang XL, Chen T, Zhang HX. A novel car¬boxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for tar¬geted drug delivery and cell imaging. CarbohydrPolym. 2012; 88(1):239-249.
27. Li JM, Wang YY, Zhao MX, et al. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for rever¬sal of multidrug resistance and real-time tracking. Biomaterials. 2012; 33(9):2780-2790.
28. Wang Y, Zhang Y, Du Z, Wu M, Zhang G. Detection of micrometas¬tases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine. 2012; 7:2315-2324.
29. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in vari¬ous administration routes and future perspectives. Int J Nanomedicine. 2007; 2(3):289-300.
30. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm. 2012; 430(1-2):238-246.
31. Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T. Solid lipid nanoparticles loaded with anti-microRNA oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharm Res. 2012; 29(1):97-109.
32. Brewer E, Coleman J, Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater. 2011; 2011:1-10.
33. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. ProgPolym Sci. 2011; 36(7):887-913.
34. vanVlerken LE, Amiji MM. Multi-functional polymeric nanopar¬ticles for tumour-targeted drug delivery. Expert Opin Drug Deliv. 2006; 3(2):205-216.
35. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.
36. Hu S, Zhang Y. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation. Int J Nanomedicine. 2010;5:1039-1048.
37. Woo HN, Chung HK, Ju EJ, et al. Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomedicine. 2012;7:2197-2208.
38. Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. BiotechnolBioeng. Epub May 21, 2012.
39. Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32(31):8010-8020.
40. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. ProcNatlAcadSci U S A. 2008;105(45):17356-17361.
41. Chen J, Li S, Shen Q, He H, Zhang Y. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug DevInd Pharm. 2011;37(11):1339-1346.
42. Cho H, Bae J, Garripelli VK, Anderson JM, Jun HW, Jo S. Redox-sensitive polymeric nanoparticles for drug delivery. ChemCommun (Camb). 2012.
43. Prajapati BG. Nanoparticles as platforms for targeted drug delivery system in cancer therapy. Internet J Nanotechnol. 2009; 3(1):1-8.
44. Stern JM, Cadeddu JA. Emerging use of nanoparticles for the therapeutic ablation of urologic malignancies. UrolOncol. 2008; 26(1):93-96.
45. Milleron RS, Bratton SB. ‘Heated’ debates in apoptosis. Cell Mol Life Sci. 2007; 64(18):2329-2333.
46. Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010; 62(3):339-345.
47. Ellis LM, Curley SA, Tanabe KK. Radiofrequency Ablation for Cancer: Current Indications, Techniques, and Outcomes. New York: Springer-Verlag; 2004.
48. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282-289.
49. Samanta B, Yan H, Fischer NO, Shi J, Jerry DJ, Rotello VM. Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J Mater Chem. 2008; 18(11):1204-1208.
50. Kam NWS, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc. 2005; 127(36):12492-12493.
51. Gannon CJ, Cherukuri P, Yakobson BI, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiof¬requency field. Cancer. 2007; 110(12):2654-2665.
52. Samia ACS, Chen X, Burda C. Semiconductor quantum dots for pho¬todynamic therapy. J Am Chem Soc. 2003; 125(51):15736-15737.
53. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotechnol. 2004; 22(11):1360-1361.
54. Letfullin RR, Iversen CB, George TF. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organ¬elles and gold nanoparticles. Nanomedicine. 2011; 7(2):137-145.
55. Misra R. and Sahoo, S.K. Intracellular trafficking of nuclearlocalization signal conjugated nanoparticles for cancertherapy. Eur. J. of Pharm. Sci. 2010; 39:152-163.

Published

2018-10-18

How to Cite

Sharma, H. K., & Kumar, M. (2018). RECENT INSIGHTS ON PROSPECTS OF CANCER NANOTECHNOLOGY. Asian Journal of Pharmaceutical Research and Development, 6(5), 46–50. https://doi.org/10.22270/ajprd.v6i5.413