Formulation Modeling and Machine Learning In Injectable Drug Product Development: A Review

Authors

  • Dr. Bodkhe Atul Arvind PAR Formulations Pvt. Ltd, Mumbai, Maharashtra, India.

DOI:

https://doi.org/10.22270/ajprd.v14i01.1692

Abstract

Injectable drug products play a vital role in modern medicine, providing efficient and precise delivery of therapeutics. The development and optimization of injectable formulations require extensive research and development, as well as a deep understanding of the underlying physicochemical properties of the drug and its interactions with excipients. In recent years, machine learning (ML) techniques have emerged as powerful tools for predicting and modeling various aspects of drug formulation, leading to enhanced efficiency and cost-effectiveness in the pharmaceutical industry. This review article provides an overview of the application of ML techniques in the formulation modeling of injectable drug products, highlighting their potential and challenges in improving drug development processes.

Downloads

Download data is not yet available.

Author Biography

Dr. Bodkhe Atul Arvind, PAR Formulations Pvt. Ltd, Mumbai, Maharashtra, India.

PAR Formulations Pvt. Ltd, Mumbai, Maharashtra, India.

References

World Health Organization (WHO). (2010). WHO best practices for injections and related procedures toolkit. Retrieved from https://www.who.int/infection-prevention/tools/injections/injections/en/

Dua, P., Hawkins, E. G., & Lal, C. V. Injectable drug delivery systems: An overview. In Comprehensive Biotechnology (Second Edition) 2016; 2: 57-69. Elsevier. doi: 10.1016/B978-0-444-63428-3.00005-4

Cevher, E., &Sensoy, D. (Eds.). (2018). Injectable Drug Delivery Systems: From Concept to Clinical Practice. CRC Press.

Rathore, A. S., Pathak, S., & Vyas, S. P. (2019). Injectable drug delivery systems: An overview. In Drug Delivery Systems (pp. 1-25). Woodhead Publishing. doi: 10.1016/B978-0-08-102550-1.00001-5.

Bala, R., Pawar, P., & Khanna, S. (2017). Formulation and Development of Pharmaceutical Dosage Forms. In Encyclopedia of Pharmacy Practice and Clinical Pharmacy (pp. 72-90). Academic Press. doi: 10.1016/B978-0-12-812736-0.00009-0.

Rangaraj, N., & Reddy, L. H. Pharmaceutical formulation development: A quality by design approach. Journal of Pharmaceutical Investigation, 2014; 44(5):309-320. doi: 10.1007/s40005-014-0145-6

Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of Quality by Design (QbD) for Developing Pharmaceutical Dosage Forms. In Quality by Design Approaches in Drug Delivery Systems (pp. 1-20). Springer. doi: 10.1007/978-3-319-66258-5_1

Shah, S., & Patel, M. (2019). Importance of preformulation in formulation development. In Preformulation in Solid Dosage Form Development (pp. 1-13). Elsevier. doi: 10.1016/B978-0-12-816806-6.00001-0.

Vippagunta, S. R., &Repka, M. A. (2018). Role of formulation development in drug discovery and development. In Pharmaceutical Formulation Development of Peptides and Proteins (pp. 1-12). CRC Press. doi: 10.1201/9781315119467-1.

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P. & Xiao, C. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387. doi: 10.1098/rsif.2017.0387

Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., &Svetnik, V. (2015). Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 2015; 55(2), 263-274. doi: 10.1021/ci500747n.

Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R. P., & Pande, V. Is multitask deep learning practical for pharma? Journal of Chemical Information and Modeling, 2017; 57(8):2068-2076. doi: 10.1021/acs.jcim.7b00146.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A. & Webster, D. R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016; 316(22):2402-2410. doi: 10.1001/jama.2016.17216

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics,2017; 19(6):1236-1246. doi: 10.1093/bib/bbx044

Ramsundar, B., Eastman, P., Walters, P., Pande, V. S., &Leswing, K. (2019). Deep learning for the life sciences: Applying deep learning to genomics, microscopy, drug discovery, and more. O'Reilly Media.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Alpaydin, E. (2020). Introduction to Machine Learning (3rd ed.). The MIT Press.

Mitchell, T. (1997). Machine Learning. McGraw-Hill

Sutton, R. S., &Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3rd ed.). Pearson.

Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). CRC Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Guyon, I., &Elisseeff, A. An introduction to variable and feature selection. Journal of Machine Learning Research, 2003; 3:1157-1182.

Kotsiantis, S. B., Zaharakis, I. D., &Pintelas, P. E. Machine learning: A review of classification and combining techniques. Artificial Intelligence Review,2006; 26(3):159-190.

Brownlee, J. (2019). Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. Machine Learning Mastery.

Chandrashekar, G., &Sahin, F. A survey on feature selection methods. Computers & Electrical Engineering, 2014; 40(1):16-28.

Guyon, I., &Elisseeff, A. Feature selection with ensembles, artificial variables, and redundancy elimination. Journal of Machine Learning Research, 2006; 7:1293-1315.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. &Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011; 12(10): 2825-2830.

Brownlee, J. (2018). Data Cleaning for Machine Learning: How to Automatically Clean Data. Machine Learning Mastery

Jolliffe, I. (2011). Principal Component Analysis (2nd ed.). Springer.

Tropsha, A., &Gramatica, P. (2003). QSAR in Drug Design and Toxicology: Historical Perspective and Recent Advances. Springer Science & Business Media.

Chen, Y., & Zou, P. Predicting Drug-Target Interactions from Chemical and Genomic Data with Network Fusion-based Models. Computational and Structural Biotechnology Journal, 2017; 15:378-384.

Zhang, G., & Xi, H. Predicting Drug-Target Interactions Using Deep Learning Models. Journal of Chemical Information and Modeling, 2019; 59(2), 615-624.

Golbraikh, A., &Tropsha, A. Beware of q2! Journal of Molecular Graphics and Modelling, 2002; 20(4):269-276.

Segler, M. H., & Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chemistry - A European Journal, 2017; 23(25), 5966-5971.

Sliwoski, G., et al.. Computational Methods in Drug Discovery. Pharmacological Reviews, 2014; 66(1); 334-395.

Cawley, G. C., & Talbot, N. L. C. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. Journal of Machine Learning Research, 2010; 11:2079-2107.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Brownlee, J. (2016). Machine Learning Mastery with Python. Machine Learning Mastery.

Brownlee, J. (2019). Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models and Work Projects End-To-End. Machine Learning Mastery.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer

Raschka, S., &Mirjalili, V. (2020). Python Machine Learning (3rd ed.). Packt Publishing.

James, G., Witten, D., Hastie, T., &Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. Springer.

Tan, P. N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press

Caruana, R., & Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised Learning Algorithms. Proceedings of the 23rd International Conference on Machine Learning (ICML).

Jain, A. K., Murty, M. N., & Flynn, P. J. Data Clustering: A Review. ACM Computing Surveys, 1999; 31(3), 264-323.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Tan, P. N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.

Kaufman, L., &Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley.

Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis (5th ed.). Wiley.

Jain, A. K. Data Clustering: 50 Years Beyond K-means. Pattern Recognition Letters, 2010; 31(8), 651-666.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X.. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996; 226-231.

MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967; 1(14):281-297

Kohonen, T.. The Self-Organizing Map. Proceedings of the IEEE, 1990; 78(9):1464-1480

Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR & Combinatorial Science, 2007; 26(5), 694-701.

Gasteiger, J. (Ed.). (2003). Handbook of Chemoinformatics: From Data to Knowledge (Vol. 4). Wiley-VCH.

Chen, H., &Engkvist, O. (2020). Chemoinformatics: Machine Learning in Chemistry. Royal Society of Chemistry.

Gramatica, P. (2007). Principles of QSAR Models Validation: Internal and External. QSAR

Fourches, D., & Barnes, J. C. (2019). Chemoinformatics and Computational Chemical Biology. Royal Society of Chemistry.

Brown, N., & Martin, Y. C. (Eds.). (2017). Computational Chemogenomics. Methods in Pharmacology and Toxicology. Springer.

Ramachandran, S., Kundu, S., & Bansal, V. Chemoinformatics Approaches for Virtual Screening and Lead Optimization: Current Scenario in Drug Discovery. Methods, 2012; 57(4):459-468.

Downloads

Published

2026-02-15

How to Cite

Dr. Bodkhe Atul Arvind. (2026). Formulation Modeling and Machine Learning In Injectable Drug Product Development: A Review. Asian Journal of Pharmaceutical Research and Development, 14(01), 39–47. https://doi.org/10.22270/ajprd.v14i01.1692