Advances in Artificial Intelligence for Drug Discovery and Development: A Review of Current Trends and Applications

Authors

  • E.Bharath Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India
  • T.S.Thilagavathi Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India
  • D.Jeeva Assistant Professor, Surya School of Pharmacy, Villupuram, India
  • S.Anbazhagan Professor, Department of Pharmaceutical Chemistry, Surya School of Pharmacy, Villupuram, India
  • S.A.Vadivel Associate Professor, Surya School of Pharmacy, Villupuram, India

DOI:

https://doi.org/10.22270/ajprd.v13i2.1541

Abstract

The rapid advancement of Artificial Intelligence (AI) has revolutionized drug discovery and development, reshaping the pharmaceutical landscape with its computational power and data-driven approaches. AI-driven methodologies, including deep learning, machine learning, and neural networks, have significantly expedited target identification, lead optimization, and drug repurposing, thereby reducing both time and cost associated with traditional drug development. Virtual screening, molecular docking, and predictive modelling have enabled more precise drug-target interactions, enhancing therapeutic efficacy and minimizing potential adverse effects. Moreover, AI's integration into chemical synthesis, polypharmacology, and biomarker discovery has expanded its applications in personalized medicine. This review explores the latest trends and applications of AI in drug discovery, emphasizing its role in optimizing drug design, predicting novel therapeutics, and improving preclinical and clinical trial success rates. While AI has demonstrated remarkable potential, challenges such as data bias, interpretability, and regulatory concerns remain critical barriers to its full-scale implementation. Addressing these challenges will be essential to unlocking AI’s transformative capabilities in revolutionizing modern drug development.

 

Downloads

Download data is not yet available.

Author Biographies

E.Bharath, Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India

Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India

T.S.Thilagavathi, Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India

Research student, Department of Pharmaceutics, Surya School of Pharmacy, Villupuram, India

D.Jeeva, Assistant Professor, Surya School of Pharmacy, Villupuram, India

Assistant Professor, Surya School of Pharmacy, Villupuram, India

S.Anbazhagan, Professor, Department of Pharmaceutical Chemistry, Surya School of Pharmacy, Villupuram, India

Professor, Department of Pharmaceutical Chemistry, Surya School of Pharmacy, Villupuram, India

S.A.Vadivel, Associate Professor, Surya School of Pharmacy, Villupuram, India

Associate Professor, Surya School of Pharmacy, Villupuram, India

References

I.V. Hinkson, B. Madej, E.A. Stahlberg, Accelerating Therapeutics for Opportunities in Medicine: A Paradigm Shift in Drug Discovery, Front Pharmacol 11(2020) 770.

H. Dowden, J. Munro, Trends in clinical success rates and therapeutic focus, Nat Rev Drug Discov 18 (2019) 495-496.

P. Hassanzadeh, F. Atyabi, R. Dinarvand, The significance of artificial intelligence in drug delivery system design, Adv Drug Deliv Rev 151-152 (2019) 169-190.

F. Bianconi, M. Filippucci, Digital wood design: innovative techniques of representation in architectural design. Vol. 24, Springer, 2019.

Xu, Y. et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation vol. 2 100179 (2021).

Zhuang, D. & Ibrahim, A. K. Deep learning for drug discovery: A study of identifying high efficacy drug compounds using a cascade transfer learning approach. Appl. Sci.11, 7772 (2021).

Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 2018, 17, 97.

Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deeplearning in drug discovery. Drug Discov. Today 2018, 23, 1241–1250.

Mater, A. C.; Coote, M. L. Deep learning in chemistry. J. Chem. Inf. Model 2019,59, 2545–2559.

C. Hasselgren, T. I. Oprea, Annu Rev PharmacolToxicol 2024, 64, 527–550.

M. Segall, Expert Opin Drug Discov 2014, 9, 803–817. https://doi.org/10.1517/17460441.2014.913565.

A. Santos-Filho, R. Dhudum, A. Ganeshpurkar, A. Pawar, Drugs andDrug Candidates 2024, 3, 148–171, https://doi.org/10.3390/DDC3010009.

S. Dara, S. Dhamercherla, S. S. Jadav, C. M. Babu, M. J. Ahsan, ArtifIntellRev 2022, 55, 1947. https://doi.org/10.1007/S10462-021-10058-4.

H. Lim, F. Cankara, C. J. Tsai, O. Keskin, R. Nussinov, A. Gursoy, CurrOpinStructBiol 2022, 73, 102328.

B. Liu, H. He, H. Luo, T. Zhang, J. Jiang, Stroke VascNeurol 2019, 4, 206–213. https://doi.org/10.1136/SVN-2019-000290.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C.Meyer, S. A. A. Kohl, A. J. Ballard, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis,Nature 2021 596, 583–589.

R. Qureshi, M. Irfan, T. M. Gondal, S. Khan, J. Wu, M. U. Hadi, J.Heymach, X. Le, H. Yan, T. Alam, Heliyon 2023, 9, https://doi.org/10.1016/J.HELIYON.2023.E17575.

D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R. K. Tekade, DrugDiscov Today 2021, 26, 80–93.

K. Jimenes-Vargas, A. Pazos, C. R. Munteanu, Y. Perez-Castillo, E. Tejera, JCheminform 2024, 16, 1–13. https://doi.org/10.1186/S13321-024-00816-1/FIGURES/3.

Y. Zhang, Y. Hu, H. Li, X. Liu, Front Genet 2022, 13, 1032779. https://doi.org/10.3389/FGENE.2022.1032779/BIBTEX.

K. YingkaiGao, A. Fokoue, H. Luo, A. Iyengar, S. Dey, P. Zhang, IJCAInternational Joint Conference on Artificial Intelligence 2018, 7, 3371–3377. https://doi.org/10.24963/IJCAI.2018/468.

K. Tian, M. Shao, Y. Wang, J. Guan, S. Zhou, Methods 2016, 110, 64–72.https://doi.org/10.1016/J.YMETH.2016.06.024.

Wang, Z. H. You, X. Chen, S. X. Xia, F. Liu, X. Yan, Y. Zhou, K. J. Song,Journal of Computational Biology 2018, 25, 361–373. https://doi.org/10.1089/CMB.2017.0135/ASSET/IMAGES/LARGE/FIGURE8.JPEG.

J. Jiménez-Luna, F. Grisoni, N. Weskamp, G. Schneider, Expert OpinDrugDiscov 2021, 16, 949–959. https://doi.org/10.1080/17460441.2021.1909567.

Domenico, G. Nicola, T. Daniela, C. Fulvio, A. Nicola, N. Orazio, JChemInf Model 2020, 60, 4582–4593.

H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke, Drug DiscovToday 2018, 23, 1241–1250.

P. C. Agu, C. N. Obulose, Drug Dev Res 2024, 85, e22159. https://doi.org/10.1002/DDR.22159.

T. Klucznik, B. Mikulak-Klucznik, M. P. McCormack, H. Lima, S. Szymkuć,M. Bhowmick, K. Molga, Y. Zhou, L. Rickershauser, E. P. Gajewska, A.Toutchkine, P. Dittwald, M. P. Startek, G. J. Kirkovits, R. Roszak, A.Adamski, B. Sieredzińska, M. Mrksich, S. L. J. Trice, B. A. Grzybowski,Chem 2018, 4, 522–532.

M. H. S. Segler, M. Preuss, M. P. Waller, Nature 2018, 555, 604–610.https://doi.org/10.1038/nature25978.

G. Schneider, D. E. Clark, AngewandteChemie International Edition2019, 58, 10792–10803. M. Popova, O. Isayev, A. Tropsha, SciAdv 2018, 4,

C. Sarkar, B. Das, V. S. Rawat, J. B. Wahlang, A. Nongpiur, I. Tiewsoh,N. M. Lyngdoh, D. Das, M. Bidarolli, H. T. Sony, International Journal of Molecular Sciences 2023, 24,

M. Lotfi Shahreza, N. Ghadiri, S. R. Mousavi, J. Varshosaz, J. R. Green,BriefBioinform 2018, 19, 878–892.

V. Parvathaneni, N. S. Kulkarni, A. Muth, V. Gupta, Drug Discov Today2019, 24, 2076–2085. https://doi.org/10.1016/J.DRUDIS.2019.06.014.

S. Mohanty, M. Harun AI Rashid, M. Mridul, C. Mohanty, S. Swayamsiddha, Clinical Research & Reviews 2020, 14, 1027–1031.

S. Yadav, A. Singh, R. Singhal, J. P. Yadav, Intelligent Pharmacy 2024,https://doi.org/10.1016/J.IPHA.2024.02.009.

S. M. Corsello, J. A. Bittker, Z. Liu, J. Gould, P. McCarren, J. E. Hirschman,S. E. Johnston, A. Vrcic, B. Wong, M. Khan, J. Asiedu, R. Narayan, C. C.Mader, A. Subramanian, T. R. Golub, Nature Medicine 2017 23, 405–408.https://doi.org/10.1038/nm.4306.

J. J. Hernandez, M. Pryszlak, L. Smith, C.Yanchus, N. Kurji, V. M.Shahani, S. V. Molinski, Front Oncol 2017, 7, 291479. https://doi.org/10.3389/FONC.2017.00273/BIBTEX.

Lozano-Diez, R. Zazo, D. T. Toledano, J. Gonzalez-Rodriguez, PLoSOne 2017, 12, e0182580.

Aliper, S. Plis, A. Artemov, A. Ulloa, P. Mamoshina, A. Zhavoronkov, Mol Pharm 2016, 13, 2524–2530.

F. Galbusera, F. Niemeyer, M. Seyfried, T. Bassani, G. Casaroli, A. Kienle,H. J. Wilke, Front BioengBiotechnol 2018, 6, 363734.

Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper, A. Zhavoronkov, Mol Pharm 2017, 14, 3098–3104.

V. Ozerov, K. V. Lezhnina, E. Izumchenko, A. V. Artemov, S. Medintsev,Q. Vanhaelen, A. Aliper, J. Vijg, A. N. Osipov, I. Labat, M. D. West, A.Buzdin, C. R. Cantor, Y. Nikolsky, N. Borisov, I. Irincheeva, E.Khokhlovich, D. Sidransky, M. L. Camargo, A. Zhavoronkov, NatureCommunications 2016 7, 1–11.

Abou Hajal, A. Z. Al Meslamani, J Med Econ 2024, 27, 304–308.https://doi.org/10.1080/13696998.2024.2315864.

M. K. Tripathi, A. Nath, T. P. Singh, A. S. Ethayathulla, P. Kaur, MolecularDiversity 2021, 25, 1439–1460. https://doi.org/10.1007/S11030-021-10256-W.

D. Kusumoto, S. Yuasa, K. Fukuda, Pharmaceuticals (Basel) 2022, 15,https://doi.org/10.3390/PH15050562.

H. Chen, X. Zhou, Y. Gao, H. Chen, J. Zhou, Comprehensive MedicinalChemistry III 2017, 2–8, 212–232.

M. Akram, C. Egbuna, C. Z. Uche, C. J. Chikwendu, S. Zafar, M. Rudrapal,N. Munir, G. Mohiuddin, R. Hannan, K. S. Ahmad, M. A. Ishfaq, M. A.Shariati, Z. Yessimbekov, W. F. Elbossaty, C. Shimavallu, Phytochemistry, Computa-tional Tools, and Databases in Drug Discovery 2023, 27–38. https://doi.org/10.1016/B978-0-323-90593-0.00008–3.

J. C. Pereira, E. R. Caffarena, C. N. Dos Santos, J Chem Inf Model 2016,56, 2495–2506.

Wu, R. Gao, Y. Zhang, Y. De Marinis, BMC Bioinformatics 2019, 20, 1–8. https://doi.org/10.1186/S12859-019-3006-Z/TABLES/5.

S. D. Sarker, L. Nahar, A. Miron, M. Guo, Annu Rep Med Chem 2020, 55,45–75. https://doi.org/10.1016/BS.ARMC.2020.02.001.

J. de O. Viana, M. B. Félix, M. D. S. Maia, V. de L. Serafim, L. Scotti, M. T.Scotti, Brazilian Journal of Pharmaceutical Sciences 2018, 54, e01010.https://doi.org/10.1590/s2175–97902018000001010.

Beneke F., Mackenrodt M.-O. Artificial intelligence and collusion. IIC Int. Rev. Intellectual Property Competition Law. 2019;50:109–134.

Steels L., Brooks R. Routledge; 2018. The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents.

Bielecki A., Bielecki A. Foundations of artificial neural networks. In: KacprzykJanusz., editor. Models of Neurons and Perceptrons: Selected Problems and Challenges. Springer International Publishing; 2019. pp. 15–28. Polish academy of sciences, Warsaw, Poland.

Kalyane D. Artificial intelligence in the pharmaceutical sector: current scene and future prospect. In: TekadeRakesh K., editor. The Future of Pharmaceutical Product Development and Research. Elsevier; 2020. pp. 73–107.

Da Silva I.N. et al Springer; 2017. Artificial Neural Networks.

Medsker L., Jain L.C. CRC Press; 1999. Recurrent Neural Networks: Design and Applications.

Hänggi M., Moschytz G.S. Springer Science & Business Media; 2000. Cellular Neural Networks: Analysis, Design and Optimization.

Rouse M. 2017. IBM Watson Super computer.https://searchenterpriseai.techtarget.com/definition/IBM-Watson-super computer. Accessed 13 October 2020.

Vyas M. Artificial intelligence: the beginning of a new era in pharmacy profession. Asian J. Pharm. 2018;12:72–76.

Guo M. A prototype intelligent hybrid system for hard gelatin capsule formulation development. Pharm. Technol. 2002;6:44–52. doi: 10.1208/pt060356.

Mehta C.H. Computational modeling for formulation design. Drug Discovery Today. 2019;24:781–788. doi: 10.1016/j.drudis.2018.11.018.

Zhao C. Toward intelligent decision support for pharmaceutical product development. J. Pharm. Innovation. 2006;1:23–35.

Rantanen J., Khinast J. The future of pharmaceutical manufacturing sciences. J. Pharm. Sci.2015;104:3612–3638. doi: 10.1002/jps.24594.

[66] Ketterhagen W.R. Process modeling in the pharmaceutical industry using the discrete element method. J. Pharm. Sci. 2009;98:442–470. doi: 10.1002/jps.21466.

Chen W. Mathematical model-based accelerated development of extended-release metformin hydrochloride tablet formulation. AAPS PharmSciTech. 2016;17:1007–1013. doi: 10.1208/s12249-015-0423-9.

Guo M. A prototype intelligent hybrid system for hard gelatin capsule formulation development. Pharm. Technol. 2002;6:44–52. doi: 10.1208/pt060356.

Mehta C.H. Computational modeling for formulation design. Drug Discovery Today. 2019;24:781–788. doi: 10.1016/j.drudis.2018.11.018.

Zhao C. Toward intelligent decision support for pharmaceutical product development. J. Pharm. Innovation. 2006;1:23–35.

Rantanen J., Khinast J. The future of pharmaceutical manufacturing sciences. J. Pharm. Sci. 2015;104:3612–3638. doi: 10.1002/jps.24594.

Das M.K., Chakraborty T. ANN in pharmaceutical product and process development. In: Puri Munish., editor. Artificial Neural Network for Drug Design, Delivery and Disposition. Elsevier; 2016. pp. 277–293.

Gams M. Integrating artificial and human intelligence into tablet production process. AAPS PharmSciTech. 2014;15:1447–1453. doi: 10.1208/s12249-014-0174-z.

Kraft, D.L. System and methods for the production of personalized drug products. US20120041778A1.

Aksu B. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm. Dev. Technol. 2013;18:236–245. doi: 10.3109/10837450.2012.705294.

Goh W.Y. Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Comput. Appl. 2002;10:311–317.

Drăgoi E.N. On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process. Drying Technol. 2013;31:72–81.

Reklaitis R. PharmaHub; 2008. Towards Intelligent Decision Support for Pharmaceutical Product Development.

Wang X. 2009 International Conference on Computational Intelligence and Software Engineering. IEEE; 2009. Intelligent quality management using knowledge discovery in databases; pp. 1–4

Hay M. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014;32:40–51. doi: 10.1038/nbt.2786

Harrer S. Artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 2019;40:577–591. doi: 10.1016/j.tips.2019.05.005.

Fogel D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 2018;11:156–164. doi: 10.1016/j.conctc.2018.08.001.

Kalafatis S.P. Positioning strategies in business markets. J. Bus. Ind. Marketing. 2000;15:416–437.

Jalkala A.M., Keränen J. Brand positioning strategies for industrial firms providing customer solutions. J. Bus. Ind. Marketing. 2014;29:253–264.

Ding M. et al Springer; 2016. Innovation and Marketing in the Pharmaceutical Industry.

Dou W. Brand positioning strategy using search engine marketing. Mis Quarterly. 2010:261–279.

Chiu C.-Y. An intelligent market segmentation system using k-means and particle swarm optimization. Expert Syst. Appl. 2009;36:4558–4565.

Toker D. A decision model for pharmaceutical marketing and a case study in Turkey. Ekonomska Istraživanja. 2013;26:101–114.

Singh J. Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. J. Pers. Selling Sales Manage. 2019; 39:2–22.

Milgrom P.R., Tadelis S. National Bureau of Economic Research; 2018. How Artificial Intelligence and Machine Learning Can Impact Market Design.

Davenport T. How artificial intelligence will change the future of marketing. J. Acad. Marketing Sci. 2020;48:24–42.

Syam N., Sharma A. Waiting for a sales renaissance in the fourth industrial revolution: machine learning and artificial intelligence in sales research and practice. Ind. Marketing Manage. 2018;69:135–146.

Mahajan K.N., Kumar A. Business intelligent smart sales prediction analysis for pharmaceutical distribution and proposed generic model. Int. J. Comput. Sci. Inform. Technol. 2017;8:407–412.

Duran O. Neural networks for cost estimation of shell and tube heat exchangers. Expert Syst. Appl. 2009;36:7435–7440.

Park Y. A literature review of factors affecting price and competition in the global pharmaceutical market. Value Health. 2016;19:A265.

De Jesus A. Emerj; 2019. AI for Pricing – Comparing 5 Current Applications.

Ho D. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019; 4:365–377. doi: 10.1039/c8nh00233a.

Sacha G.M., Varona P. Artificial intelligence in nanotechnology. Nanotechnology. 2013; 24:452002.

Hassanzadeh P. The significance of artificial intelligence in drug delivery system design. Adv. Drug Delivery Rev. 2019; 151:169–190. doi:10.1016/j.addr.2019.05.001. Luo M. Micro‐/nanorobots at work in active drug delivery. Adv. Funct. Mater. 2018;28:1706100.

Fu J., Yan H. Controlled drug release by a nanorobot. Nat. Biotechnol. 2012; 30:407–408. doi: 10.1038/nbt.2206.

Calzolari D. Search algorithms as a framework for the optimization of drug combinations. PLoSComput. Biol. 2008;4:e1000249. doi: 10.1371/journal.pcbi.1000249. [DOI] [PMC free article] [PubMed] [Google Scholar].

Wilson B., KM G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Future Med. 2020;15:433–435. doi: 10.2217/nnm-2019-0366.

Tsigelny I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform. 2019;20:1434–1448. doi: 10.1093/bib/bby004.

F. Boniolo, E. Dorigatti, A.J. Ohnmacht, et al. Artificial intelligence in early drug discovery enabling precision medicineExpert Opinion on Drug Discovery, 16 (2021), pp. 991-1007.

D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R. K. Tekade, Drug Discov Today 2021, 26, 80–93.

G. Hessler, K. H. Baringhaus, Molecules 2018, 23, 2520.

A. H. Vo, T. R. Van Vleet, R. R. Gupta, M. J. Liguori, M. S. Rao, Chem Res Toxicol 2020, 33, 20–37. https://doi.org/10.1021/Acs.Chemrestox. 9b00227/Asset/Images/Medium/Tx9b00227_0004.GIF.

G. Patlewicz, J. M. Fitzpatrick, Chem Res Toxicol 2016, 29, 438–451.

Z. Y. Algamal, M. H. Lee, A. M. Al-Fakih, M. Aziz, J Chemom 2015, 29,547–556. https://doi.org/10.1002/CEM.2741.

P. Bannigan, M. Aldeghi, Z. Bao, F. Häse, A. Aspuru-Guzik, C. Allen, AdvDrugDeliv Rev 2021, 175, 113806.

R. Chen, X. Liu, S. Jin, J. Lin, J. Liu, Molecules 2018, 23, 2208,

J. Jiménez-Luna, F. Grisoni, G. Schneider, Nature Machine Intelligence2020 2, 573–584.

C. J. Kelly, A. Karthikesalingam, M. Suleyman, G. Corrado, D. King, BMC Med 2019, 17, 1–9. https://doi.org/10.1186/S12916-019-1426-2/PEER-REVIEW.

Published

2025-04-15

How to Cite

E.Bharath, T.S.Thilagavathi, D.Jeeva, S.Anbazhagan, & S.A.Vadivel. (2025). Advances in Artificial Intelligence for Drug Discovery and Development: A Review of Current Trends and Applications. Asian Journal of Pharmaceutical Research and Development, 13(2), 67–78. https://doi.org/10.22270/ajprd.v13i2.1541