Illuminating Healing: A Comprehensive Review of Blue and Redlight Therapy Applications and Efficacy

Authors

  • Harshdeep V. Bindod Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.
  • Pooja R. Hatwar Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.
  • Dr. Ravindra L. Bakal Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.
  • Vedika N. Dafe Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

DOI:

https://doi.org/10.22270/ajprd.v13i1.1528

Abstract

In this study we have assessed the use of blue light (peaking at 415 nm), blue light (approximately 700 nm), and a blue and red light mixture (peaking at 415 and 660 nm) in the treatment of psoriasis, acne vulgaris, diabetes, cancer, actinic keratosis, seasonal affective disorder, and Candida albicans infections. The use of light with wavelengths between 400 and 1100 nm to encourage tissue repair, lower inflammation, and enhance analgesia is known as photobiomodulation (PBM). Red and near-infrared (NIR) light have long been used therapeutically, but new research suggests that blue and green light, among other visible spectrum wavelengths, may also be helpful.  The purpose of this review is to assess the research on the possible therapeutic benefits of PBM, with a focus on the effects of red and blue light. This review emphasizes how, depending on the light's wavelength, PBM can have a wide range of effects on the body's various chromophores. The necessity of disclosing exposure and treatment data is still emphasized because doing so will allow for direct comparisons between trials and, ultimately, the identification of PBM's full potential.

 

Downloads

Download data is not yet available.

Author Biographies

Harshdeep V. Bindod, Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Pooja R. Hatwar, Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Dr. Ravindra L. Bakal, Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Vedika N. Dafe, Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

Shri Swami Samarth Institute ofPharmacy, At Parsodi, Dhamangaon Rly, Dist-Amravati (444709) Maharashtra, India.

References

Barbaric J, Abbott R, Posadzki P, Car M, Gunn LH, Layton AM, Majeed A, Car J. Light therapies for acne. Cochrane Database Syst Rev. 2016;9(9):CD007917.

Alexiades M. Laser and light-based treatments of acne and acne scarring. Clin Dermatol. 2017;35(2):183-189.

Sutherland J C. Biological effects of polychromatic light. Photochem. Photobiol., 2002;76(2):164-170.

Sklar L R, Almutawa F, Lim H W, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem. Photobiol. Sci. 2013;12(1):54-64.

Garssen J, Van Loveren H. Effects of ultraviolet exposure on the immune system. Crit. Rev. Immunol. 2001;21(4):359-397.

Cadet J, Douki T, Ravanat J-L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 2015;91(1):140-155.

Garza ZCF, Born M, Hilbers PAJ, van Riel NAW, Liebmann J. Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities. Curr Med Chem. 2018;25(40):5564-5577.

Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life. 2022;12(9):1431.

Leid J. Blue light: what are the risks to our eyes? Points de Vue. Int Rev OphtOpt 2016;1–7.

Gomes CC, Preto S. Blue light: a blessing or a curse? Proc Manuf. 2015; 3:4472–4479.

Cougnard-Gregoire A, Merle BMJ, Aslam T, Seddon JM, Aknin I, Klaver CCW, Garhöfer G, Layana AG, Minnella AM, Silva R, Delcourt C. Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther. 2023;12(2):755-788.

Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, Jagdeo J. Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol. 2021;84(5):1219-1231.

Kim WR, Bae SG, Oh TH. Photodynamic therapy of red and blue lights on Malassezia pachydermatis: an in vitro study. Pol J Vet Sci. 2018;21(1):185-191

Gholam P, Bosselmann I, Enk A, Fink C. Impact of red versus blue light on tolerability and efficacy of PDT: a randomized controlled trial. J Dtsch Dermatol Ges. 2018;16(6):711-717.

Kokel D, Cheung CY, Mills R, Coutinho-Budd J, Huang L, Setola V, Sprague J, Jin S, Jin YN, Huang XP, Bruni G, Woolf CJ, Roth BL, Hamblin MR, Zylka MJ, Milan DJ, Peterson RT. Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol. 2013; 9:257-63.

Babes A, Sauer SK, Moparthi L, Kichko TI, Neacsu C, Namer B, Filipovic M, Zygmunt PM, Reeh PW, Fischer MJ. Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1. J Neurosci.2016; 36:5264–5278.

Babes A, Ciotu CI, Hoffmann T, Kichko TI, Selescu T, Neacsu C, Sauer SK, Reeh PW, Fischer MJM. Photosensitization of TRPA1 and TRPV1 by 7-dehydrocholesterol: implications for the Smith-Lemli-Opitz syndrome. PAIN. 2017; 158:2475–2486.

Moran MM, Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol. 2018; 175:2185–2203.

Nilius B, Appendino G, Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch.2012; 464:425–458.

Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001; 413:203–210.

Aleixandre-Carrera F, Engelmayer N, Ares-Suarez D, Acosta MDC, Belmonte C, Gallar J, Meseguer V, Binshtok AM. Optical assessment of nociceptive TRP channel function at the peripheral nerve terminal. Int J Mol Sci. 2021;22(2):481.

Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci. 2007; 27:9874–9884.

Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem. 2008; 283:32691–32703.

Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol. 2007; 583:175-193.

Akopian AN, Ruparel NB, Patwardhan A, Hargreaves KM. Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci. 2008; 28:1064-1075.

Kistner K, Siklosi N, Babes A, Khalil M, Selescu T, Zimmermann K, Wirtz S, Becker C, Neurath MF, Reeh PW, Engel MA. Systemic desensitization through TRPA1 channels by capsazepine and mustard oil—a novel strategy against inflammation and pain. Sci Rep. 2016; 6:28621.

Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM. Desensitization of transient receptor potential ankyrin 1 (TRPA1) by the TRP vanilloid 1-selective cannabinoid arachidonoyl-2 chloroethanolamine. Mol Pharmacol. 2011; 80:117–123.

Krassovka JM, Suschek CV, Prost M, Grotheer V, Schiefer JL, Demir E, Fuchs PC, Windolf J, Sturmer EK, Oplander C. The impact of non-toxic blue light (453 nm) on cellular antioxidative capacity, TGF-beta1 signaling, and myofibrogenesis of human skin fibroblasts. J PhotochemPhotobiol B. 2020; 209:111952.

Opl ¨ander C, Deck A, Volkmar CM, Kirsch M, Liebmann J, Born M, van Abeelen F, van Faassen EE, Kr ¨oncke KD, Windolf J, Suschek CV. Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic Biol Med. 2013; 65:1363–1377.

Reuss, Anna Maria & Groos, Dominik & Scholl, Robert & Schröter, Marco &Maihöfner, Christian. Blue-light treatment reduces spontaneous and evoked pain in a human experimental pain model. Pain reports. 2021;6: e968.

SerrageH, Heiskanen V, Palin WM, Cooper PR, Milward MR, Hadis M, Hamblin MR. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. PhotochemPhotobiol Sci. 2019;18(8):1877-1909.

Jagdeo J, Austin E, Mamalis A, et al. Light-emitting diodes in dermatology: a systematic review of randomized controlled trials. Lasers Surg Med. 2018;50(6):613-628.

Platsidaki E, Dessinioti C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Res. 2018; 7:1953.

Greaves AJ. The effects of narrowbands of visible light upon some skin disorders: a review. Int J Cosmet Sci. 2016;38(4):325-345.

Liang Y, Li L. The Combination of Red and Blue Light, Radiofrequency and Intense Pulsed Light for the Treatment of Facial Postacne Erythema. Clin CosmetInvestig Dermatol. 2022; 15:2383-2389.

Noborio R, Nishida E, Kurokawa M, Morita A. A new targeted blue light phototherapy for the treatment of acne. PhotodermatolPhotoimmunolPhotomed. 2007;23(1):32–34.

Pinto C, Schafer F, Orellana JJ, Gonzalez S, Hasson A. Efficacy of red light alone and methyl-aminolaevulinate-photodynamic therapy for the treatment of mild and moderate facial acne. Indian J Dermatol VenereolLeprol. 2013;79(1):77–82.

Papageorgiou P, Katsambas A, Chu A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol. 2000 May;142(5):973-978.

Akuffo-Addo E, Ramsay K, Mohsen S, Boisvert J, Mukovozov I. Visible Light in the Treatment of Acne Vulgaris. J Cutan Med Surg. 2024 Jul 26:12034754241265697.

Di Stasi SM, et al. Hexaminolevulinate hydrochloride in the detection of nonmuscle invasive cancer of the bladder. Ther Adv Urol. 2015;7(6):339–50.

Daneshmand S, et al. Hexaminolevulinate blue-light cystoscopy in non-muscle-invasive bladder cancer: review of the clinical evidence and consensus statement on appropriate use in the USA. Nat Rev Urol. 2014;11(10):589–596.

Pietzak EJ. The Impact of Blue Light Cystoscopy on the Diagnosis and Treatment of Bladder Cancer. Current Urology Reports.2017; 1-5.

Stenzl A, et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol. 2010;184(5):1907–1913.

Burger M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a metaanalysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–54. A major meta-analysis that demonstrates the improved detection rates and recurrence rates with the use of BLC.

Shen P, et al. Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int. 2012;110(6 Pt B):E209–15.

Kausch I, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. 2010;57(4):595–606.

Choudhary S, Nouri K &Elsaie Mohamed. Photodynamic therapy in dermatology: A review. Lasers in medical science. 2009;24(6): 971-980.

Zang L, Zhao H, Ji X, Cao W, Zhang Z, Meng P. Photophysical properties, singlet oxygen generation efficiency and cytotoxic effects of aloe emodin as a blue light photosensitizer for photodynamic therapy in dermatological treatment. PhotochemPhotobiol Sci. 2017;16(7):1088-1094.

Werner RN, Stockfleth E, Connolly SM et al.International League of Dermatological Societies; European Dermatology Forum. Evidence- and consensus-based (S3) Guidelines for the Treatment of Actinic Keratosis – International League of Dermatological Societies in cooperation with the European Dermatology Forum – Short version. J EurAcad Dermatol Venereol. 2015;29(11): 2069 –2079.

Hashim PW, Chen T, Rigel D, Bhatia N, Kircik LH. Actinic Keratosis: Current Therapies and Insights into New Treatments. J Drugs Dermatol. 2019 May 1;18(5): s161-166.

Steinbauer JM, Schreml S, Kohl EA et al. Photodynamic therapy in dermatology. J Dtsch Dermatol Ges. 2010; 8: 454 – 464.

Gholam P, Denk K, Sehr T et al. Factors influencing pain intensity during topical photodynamic therapy of complete cosmetic units for actinic keratoses. J Am Acad Dermatol. 2010 ;63: 213 – 218.

Fink C, Enk A, Gholam P. Photodynamic therapy–aspects of pain management. J Dtsch Dermatol Ges. 2015; 13 (1): 15 – 22.

Gholam P, Bosselmann I, Enk A, Fink C. Impact of red versus blue light on tolerability and efficacy of PDT: a randomized controlled trial. J Dtsch Dermatol Ges. 2018;16(6):711-717.

Ramaswamy P, Powers JG, Bhawan J, Polyak I, Gilchrest BA. Effective blue light photodynamic therapy does not affect cutaneous langerhans cell number or oxidatively damage DNA. Dermatol Surg. 2014;40(9):979-987.

Bickers DR, Frank J. The porphyrias. In: Goldsmith LA, Katz SI, Gilchrest BA, et al, editors. Fitzpatrick’s dermatology in general medicine (8th ed). Vol 2. New York: McGraw-Hill Co; 2012. pp. 1538–1573.

Kleinpenning MM, Otero ME, van Erp PE, Gerritsen MJ, van de Kerkhof PC. Efficacy of blue light vs. red light in the treatment of psoriasis: a double-blind, randomized comparative study. J EurAcad Dermatol Venereol. 2012;26(2):219-25.

Garber G. An overview of fungal infections. Drugs.2001;61 (Suppl 1):1-12.

Jayatilake JA. A review of the ultrastructural features of superficial candidiasis. Mycopathologia. 2011; 171:235–250.

Segal E. Candida, still number one-what do we know and where are we going from there? Mycoses. 2005;48(Suppl. 1):3–11.

Cowen LE, Anderson JB, Kohn LM. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol. 2002; 56:139-165.

Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother. 2010 Sep;54(9):3578-3583.

Pelletier R, Peter J, Antin C, Gonzalez C, Wood L, Walsh TJ. Emergence of resistance of Candida albicans to clotrimazole in human immunodeficiency virus-infected children: in vitro and clinical correlations. J Clin Microbiol. 2000;38(4):1563-1568.

Jain A, Jain S, Rawat S. Emerging fungal infections among children: A review on its clinical manifestations, diagnosis, and prevention. J Pharm Bioallied Sci. 2010;2(4):314-320.

Rogers TR. Antifungal drug resistance: does it matter? Int J Infect Dis. 2002;6 (Suppl 1): S47-53.

Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. PhotochemPhotobiol. 2011;87(4):904-909.

Lambrechts SA, Aalders MC, Van Marle J. Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother. 2005;49(5):2026-2034.

Smijs TG, Pavel S. The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. PhotochemPhotobiol. 2011;87(1):2-13.

Lyon JP, Moreira LM, de Moraes PC, dos Santos FV, de Resende MA. Photodynamic therapy for pathogenic fungi. Mycoses. 2011;54(5): e265-271.

Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR. Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother. 2011;55(12):5710-5717.

Gagné AM, Lévesque F, Gagné P, Hébert M. Impact of blue vs red light on retinal response of patients with seasonal affective disorder and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):227-231.

Bilu C, Einat H, Tal-Krivisky K, Mizrahi J, Vishnevskia-Dai V, Agam G, Kronfeld-Schor N. Red white and blue - bright light effects in a diurnal rodent model for seasonal affective disorder. Chronobiol Int. 2019;36(7):919-926.

Hamblin MR, Abrahamse H. Can light-based approaches overcome antimicrobial resistance? Drug Dev Res. 2019;80(1):48-67.

Masson-Meyers DS, Bumah VV, Enwemeka CS. Blue light does not impair wound healing in vitro. J PhotochemPhotobiol B. 2016; 160:53-60.

Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel). 2022;12(9):1431.

KazemiKhoo N, Ansari F. Blue or red: which intravascular laser light has more effects in diabetic patients? Lasers Med Sci. 2015;30(1):363-366.

Mysore V, Shashikumar BM. Targeted phototherapy. Indian J. Dermatol VenereolLeprol. 2016;82(1):1-6.

Mysore V. Targeted phototherapy. Indian J Dermatol VenereolLeprol. 2009;75(2):119-25.

Czarnecka-Czapczyńska M, Aebisher D, Dynarowicz K, Krupka-Olek M, Cieślar G, Kawczyk-Krupka A. Photodynamic Therapy of Breast Cancer in Animal Models and Their Potential Use in Clinical Trials-Role of the Photosensitizers: A Review. Front Biosci (Landmark Ed). 2023;28(7):144.

Published

2025-02-15

How to Cite

Bindod, H. V., Hatwar, P. R., Bakal, D. R. L., & Dafe, V. N. (2025). Illuminating Healing: A Comprehensive Review of Blue and Redlight Therapy Applications and Efficacy. Asian Journal of Pharmaceutical Research and Development, 13(1), 204–210. https://doi.org/10.22270/ajprd.v13i1.1528