Mimicking the Human Body: The Rise of Organ-on-a-Chip Technologies
DOI:
https://doi.org/10.22270/ajprd.v13i1.1526Abstract
Organ-on-a-Chip (OoC) technology is transforming the way scientists study human biology by recreating organ functions on microfluidic chips. These small-scale devices replicate the conditions of human tissues, providing more accurate models for drug testing, disease research, and biological studies. Unlike traditional methods such as animal testing or 2D cell cultures, OoCs offer a more precise understanding of how organs work and respond to treatments. Advances in tissue engineering and microfabrication have led to the development of increasingly complex OoC systems. These platforms now allow for the study of multiple organ interactions, as well as the use of patient-specific cells to explore personalized treatments. Applications range from understanding diseases to testing drug safety and efficacy, with significant potential to reduce the high failure rates seen in clinical trials. As OoC technology continues to advance, its role in medical research and personalized medicine is expected to expand, offering a promising alternative to conventional testing methods and helping to pave the way for more effective therapies. The review highlights how OoCs have progressed from basic models to more complex systems, incorporating multiple cell types and even linking different organs together on a single chip. These advancements offer new insights into how the body works and how diseases develop, helping to speed up drug discovery and improve the testing of new treatments. OoC technology is also opening doors to personalized medicine by enabling experiments with cells derived from individual patients. Looking ahead, OoCs are set to become even more sophisticated, with the potential to model entire systems of the body. This could lead to more effective therapies and a better understanding of human biology, while reducing reliance on less accurate testing methods.
Downloads
References
Leung, Chak Ming ; de Haan, Pim ; Ronaldson-Bouchard, Kacey et al. / A guide to the organ-on-a-chip. In: Nature Reviews Methods Primers. 2022 ; Vol. 2, No. 1.
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118. PMID: 24622198.
Alessandro Polini, Loretta L. del Mercato, Adriano Barra, Yu Shrike Zhang, Franco Calabi, Giuseppe Gigli,Towards the development of human immune-system-on-a-chip platforms,Drug Discovery Today,Volume 24, Issue 2,2019,Pages 517-525.
Duxin Sun, Wei Gao, Hongxiang Hu, Simon Zhou, Why 90% of clinical drugdevelopment fails and how to improve it?, Acta Pharmaceutica Sinica B,Volume 12, Issue 7,2022,Pages 3049- 3062,ISSN22113835,https://doi.org/10.1016/j.apsb.2022.02.002.
Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018 Nov 7;16(1):304. doi: 10.1186/s12967-018-16781. PMID: 30404629; PMCID: PMC6223056.
Young EW, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010 Mar;39(3):1036-48. doi: 10.1039/b909900j. Epub 2010 Feb 1. PMID: 20179823; PMCID: PMC2967183.
Au AK, Huynh W, Horowitz LF, Folch A. 3D-Printed Microfluidics. Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81. doi: 10.1002/anie.201504382. Epub 2016 Feb 8. PMID: 26854878; PMCID: PMC7679199.
Galateanu B, Hudita A, Biru EI, Iovu H, Zaharia C, Simsensohn E, Costache M, Petca RC, Jinga V. Applications of Polymers for Organ-on-Chip Technology in Urology. Polymers (Basel). 2022 Apr 20;14(9):1668. doi: 10.3390/polym14091668. PMID: 35566836; PMCID: PMC9105302.
Pasman T, Grijpma D, Stamatialis D, Poot A. Flat and microstructured polymeric membranes in organs-on-chips. J R Soc Interface. 2018 Jul;15(144):20180351. doi: 10.1098/rsif.2018.0351. PMID: 30045892; PMCID: PMC6073644.
Ding C, Chen X, Kang Q and Yan X (2020) Biomedical Application of Functional Materials in Organ-on-a-Chip. Front. Bioeng. Biotechnol. 8:823.doi: 10.3389/fbioe.2020.00823
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics. 2022 May 31;14(6):1177. doi: 10.3390/pharmaceutics14061177. PMID: 35745750; PMCID: PMC9229474.
Galateanu B, Hudita A, Bîru EI, Iovu H, Zaharia C, , et al. Fabrication of Organ-on-Chip. Encyclopedia. Available at: https://encyclopedia.pub/entry/22260. Accessed October 15, 2024.
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. Micromachines (Basel). 2021 Nov 25;12(12):1443. doi: 10.3390/mi12121443. PMID: 34945293; PMCID: PMC8707724.
Carvalho, V., Gonçalves, I., Lage, T., Rodrigues, R. O., Minas, G., Teixeira, S. F. C. F., Moita, A. S., Hori, T., Kaji, H., & Lima, R. A. (2021). 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review. Sensors (Basel, Switzerland), 21(9), 3304. https://doi.org/10.3390/s21093304
Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D Printed Microfluidics. Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10. PMID: 31821017; PMCID: PMC7282950.
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R.Monolithic microfabricated valves and pumps by multilayer soft lithography. Sci. (N. Y., N. Y.) 288, 113–116 (2000).
Jamieson C, Keenan P, Kirkwood D,Oji S, Webster C, Russell KA and Koch TG (2021) A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine. Front. Vet. Sci. 7:584193.doi: 10.3389/fvets.2020.584193
Arumugam P, Kaarthikeyan G, Eswaramoorthy R (April 11, 2024) Three-Dimensional Bioprinting: The Ultimate Pinnacle of Tissue Engineering. Cureus 16(4): e58029. DOI 10.7759/cureus.58029
Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023 Jan 24;26(2):106039. doi: 10.1016/j.isci.2023.106039. PMID: 36761021; PMCID: PMC9906021.
Huang, J., Qin, Q., & Wang, J. (2020). A Review of Stereolithography: Processes and Systems. Processes.
Ng WL, Lee JM, Zhou M, Chen YW, Lee KA, Yeong WY, Shen YF. Vat polymerization-based bioprintingprocess, materials, applications and regulatory challenges. Biofabrication. 2020 Feb 7;12(2):022001. doi: 10.1088/1758-5090/ab6034. PMID: 31822648.
Schmidlechner, C., &Kalaskar, D. M. (2018). Stereolithography. InTech. doi: 10.5772/intechopen.78147
Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010 Feb 9;22(6):673-85. doi: 10.1002/adma.200901141. PMID: 20217769.
Y. Guo, H. S. Patanwala, B. Bognet, and A. W. K. Ma, ―Inkjet and inkjet-based 3d printing: connecting fluid properties and printing performance,‖ D printing, vol. 23, no. 3, p. 15, 2017.
Mukhtarkhanov M, Perveen A, Talamona D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines (Basel). 2020 Oct 19;11(10):946. doi: 10.3390/mi11100946. PMID: 33086736; PMCID: PMC7589843.
You F, Eames BF, Chen X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597. PMID: 28737701; PMCID: PMC5536084.
Xia Y, Whitesides GM. Soft Lithography. Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G. PMID: 29711088.
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref
AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol. 2019 Dec;56(12):8489-8512. doi: 10.1007/s12035-019-01653-2. Epub 2019 Jul 1. PMID: 31264092; PMCID: PMC6842047.
Kawakita S, Mandal K, Mou L, Mecwan MM, Zhu Y, Li S, Sharma S, Hernandez AL, Nguyen HT, Maity S, de Barros NR, Nakayama A, Bandaru P, Ahadian S, Kim HJ, Herculano RD, Holler E, Jucaud V, Dokmeci MR, Khademhosseini A. Organ-On-A-Chip Models of the Blood-Brain Barrier: Recent Advances and Future Prospects. Small. 2022 Sep;18(39):e2201401. doi: 10.1002/smll.202201401. Epub 2022 Aug 17. PMID: 35978444; PMCID: PMC9529899.
Pamies D, Hartung T, Hogberg HT. Biological and medical applications of a brain-on-a-chip. Exp Biol Med (Maywood). 2014 Sep;239(9):1096-1107. doi: 10.1177/1535370214537738. Epub 2014 Jun 9. PMID: 24912505; PMCID: PMC4779552.
Huang W, Chen YY, He FF, Zhang C. Revolutionizing nephrology research: expanding horizons with kidney-ona-chip and beyond. Front BioengBiotechnol. 2024 Mar 28;12:1373386. doi: 10.3389/fbioe.2024.1373386. PMID: 38605984; PMCID: PMC11007038.
Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped opportunities. Kidney Int. 2018 Dec;94(6):1073-1086. doi: 10.1016/j.kint.2018.06.034. Epub 2018 Oct 23. PMID: 30366681; PMCID: PMC6408139.
Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubuleon-a-chip for drug transport and nephrotoxicity assessment. IntegrBiol (Camb). 2013 Sep;5(9):1119-29. doi: 10.1039/c3ib40049b. PMID: 23644926.
Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells. 2021 Jun 26;10(7):1602. doi: 10.3390/cells10071602. PMID: 34206722; PMCID: PMC8304815.
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016 Dec;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003. Epub 2016 Sep 5. PMID: 27710832; PMCID: PMC5198581.
Yang Q, Xiao Z, Lv X, Zhang T, Liu H. Fabrication and Biomedical Applications of Heart-on-a-chip. Int J Bioprint. 2021 Jun 26;7(3):370. doi: 10.18063/ijb.v7i3.370. PMID: 34286153; PMCID: PMC8287510.
Bingsong Gu, Kang Han, Hanbo Cao, Xinxin Huang, Xiao Li, Mao Mao, Hui Zhu, Hu Cai, Dichen Li, JiankangHe,Heart-on-a-chip systems with tissue-specific functionalities for physiological, pathological, and pharmacological studies,Materials Today Bio,Volume 24,2024,100914,ISSN 25900064,https://doi.org/10.1016/j.mtbio.2023.100914.
Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23, 467–491 (2022). https://doi.org/10.1038/s41576-022-00466-9
Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020 Feb 12;19(1):9. doi: 10.1186/s12938-020-0752-0. PMID: 32050989; PMCID: PMC7017614
Deguchi, S., Takayama, K. State-of-the-art liver disease research using liver-on-a-chip. Inflamm Regener 42, 62 (2022). https://doi.org/10.1186/s41232-022-00248-0
Donkers, J. M., Eslami Amirabadi, H., & van de Steeg, E. (2021). Intestine-on-a-chip: Next level in vitro research model of the human intestine.Current Opinion in Toxicology, 25, 6-14. https://doi.org/10.1016/j.cotox.2020.11.002
Konishi S, Ishibashi S, Shimizu S, Watanabe K, Abdalkader R, Fujita T. Openable artificial intestinal tract device integrated with a permeable filter for evaluating drug permeation through cells. Sci Rep. 2023 Jul 17;13(1):11519. doi: 10.1038/s41598-023-38522-x. PMID: 37460617; PMCID: PMC10352237.
Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE. Microfluidic Organ-on-a-Chip Models of Human Intestine. Cell Mol Gastroenterol Hepatol. 2018 Apr 24;5(4):659-668. doi: 10.1016/j.jcmgh.2017.12.010. PMID: 29713674; PMCID: PMC5924739.
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng. 2021 Jul 8;5(3):030901. doi: 10.1063/5.0046376. Erratum in: APL Bioeng. 2021 Oct 14;5(4):049901. doi: 10.1063/5.0073964. PMID: 34258497; PMCID: PMC8270645.
Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin. Small. 2020 Oct;16(39):e2002515. doi: 10.1002/smll.202002515. Epub 2020 Jul 30. PMID: 33460277.
Wufuer M, Lee G, Hur W, Jeon B, Kim BJ, Choi TH, Lee S. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep. 2016 Nov 21;6:37471. doi: 10.1038/srep37471. PMID: 27869150; PMCID: PMC5116589.
Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics. 2019 Sep 2;11(9):445. doi: 10.3390/pharmaceutics11090445. PMID: 31480652; PMCID: PMC6781558.
Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip Device for Ex Vivo Monitoring of Transdermal Delivery of Drugs-Design, Fabrication, and Testing. Pharmaceutics. 2019 Sep 2;11(9):445. doi: 10.3390/pharmaceutics11090445. PMID: 31480652; PMCID: PMC6781558.
Cecen B, Karavasili C, Nazir M, Bhusal A, Dogan E, Shahriyari F, Tamburaci S, Buyukoz M, Kozaci LD, Miri AK. Multi-Organs-on-Chips for Testing Small-Molecule Drugs: Challenges and Perspectives. Pharmaceutics. 2021 Oct 11;13(10):1657. doi: 10.3390/pharmaceutics13101657. PMID: 34683950; PMCID: PMC8540732.
Kimura H, Sakai Y, Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug MetabPharmacokinet. 2018 Feb;33(1):43-48. doi: 10.1016/j.dmpk.2017.11.003. Epub 2017 Nov 13. PMID: 29175062.
Sasserath T, Rumsey JW, McAleer CW, Bridges LR, Long CJ, Elbrecht D, Schuler F, Roth A, Bertinetti-LaPatki C, Shuler ML, Hickman JJ. Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip. Adv Sci (Weinh). 2020 Jun 2;7(13):2000323. doi: 10.1002/advs.202000323. PMID: 32670763; PMCID: PMC7341107.
Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, Malpani SS, Arnold-Murray CA, Chen K, Jiang M, Bai L, Nguyen CT, Zhang J, Laronda MM, Hope TJ, Maniar KP, Pavone ME, Avram MJ, Sefton EC, Getsios S, Burdette JE, Kim JJ, Borenstein JT, Woodruff TK. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017 Mar 28;8:14584. doi: 10.1038/ncomms14584. PMID: 28350383; PMCID: PMC5379057.
Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated Gut and Liver Microphysiological Systems for Quantitative In Vitro Pharmacokinetic Studies. AAPS J. 2017 Sep;19(5):14991512. doi: 10.1208/s12248-017-0122-4. Epub 2017 Jul 27. PMID: 28752430; PMCID: PMC6540747.
Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, McLamb W, Platt V, Bridges R, Cai Y, Santhanam N, Berry B, Najjar S, Akanda N, Guo X, Martin C, Ekman G, Esch MB, Langer J, Ouedraogo G, Cotovio J, Breton L, Shuler ML, Hickman JJ. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016 Feb 3;6:20030. doi: 10.1038/srep20030. PMID: 26837601; PMCID: PMC4738272.
Wagner I, Materne EM, Brincker S, Süssbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip. 2013 Sep 21;13(18):3538-47. doi: 10.1039/c3lc50234a. PMID: 23648632.
Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017 Aug 18;7(1):8837. doi: 10.1038/s41598-017-08879-x. PMID: 28821762; PMCID: PMC5562747.
Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015 Jun 21;15(12):2688-99. doi: 10.1039/c5lc00392j. PMID: 25996126.
Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, Huebsch N, Okochi H, Hancock MJ, Siemons B, Boggess SC, Goswami I, Miller EW, Willenbring H, Healy KE. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Front Pharmacol. 2021 May 7;12:667010. doi: 10.3389/fphar.2021.667010. PMID: 34025426; PMCID: PMC8138446.
Maschmeyer I, Hasenberg T, Jaenicke A, Lindner M, Lorenz AK, Zech J, Garbe LA, Sonntag F, Hayden P, Ayehunie S, Lauster R, Marx U, Materne EM. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro. Eur J Pharm Biopharm. 2015 Sep;95(Pt A):7787. doi: 10.1016/j.ejpb.2015.03.002. Epub 2015 Apr 6. PMID: 25857839; PMCID: PMC6574126.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Radhika A. Sonawani, Shweta S. Dhavane

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
AUTHORS WHO PUBLISH WITH THIS JOURNAL AGREE TO THE FOLLOWING TERMS:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).