Transforming Oncology: Cutting-Edge Developments In Radionuclide Therapies

Authors

  • Sayed Manzer Tasfiya Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;
  • Shabaray. R.A Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;
  • Nayak A Lathika Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

DOI:

https://doi.org/10.22270/ajprd.v12i6.1487

Abstract

Main objective of this study was to list out the recent advancement in radionuclide therapy.Cancer rates are increasing globally at a rapid pace. This trend is influenced by a combination of factors, including the aging and expansionof the population, as well as shifts in the prevalence and distribution of key cancer risk factors.Current cancer treatments, such as surgery and external beam radiotherapy, become less effective once a tumor has spread. Targeted radionuclide therapy (TRT) uses radio-labeled biologics or other carriers to precisely deliver a cytotoxic dose of radiation to inoperable or metastatic cancer, emitting Auger electrons, β-particles, or α-particles.β-particle-emitting RPT agents have highly promising clinical and preclinical preliminary results with RPT agents using other α-particle-emitting radionuclides has reignited interest in RPT.Recent advancements in radionuclide therapies have shown promising results in various cancers. Astatine-211 (211At) has demonstrated potential in treating paraganglioma, acute leukemia, and thyroid cancer. 225Ac-DOTATATE has shown promise for gastroenteropancreatic neuroendocrine tumors. Bismuth-213 (213Bi) and Lead-212 have also shown positive results in treating different cancers, including small lung cancer. Boron neutron capture therapy (BNCT), recently FDA-approved, has improved outcomes in head and neck cancer. Additionally, nanomaterials are being used to deliver radionuclides more effectively, enhancing treatment precision and patient outcomes.

In conclusion there is a wide advancement in radionuclide therapy in today’s world and preparing for the future therapies. Radionuclide therapy is a door for the multitude of cancers and thus is a potential treatment option for those with advanced cancers and failed established therapeutics.

 

Downloads

Download data is not yet available.

Author Biographies

Sayed Manzer Tasfiya, Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

Shabaray. R.A, Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

Nayak A Lathika, Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

Srinivas College of Pharmacy Valachil Post Farangipete, Mangaluru Karnataka State, India;

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019 Jan;69(1):7-34.

Tian L, Yi X, Dong Z, Xu J, Liang C, Chao Y, Wang Y, Yang K, Liu Z. Calcium bisphosphonate nanoparticles with chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced cancer radioisotope therapy. ACS nano. 2018 Oct 25;12(11):11541-51.

Malcolm J, Falzone N, Lee BQ, Vallis KA. Targeted radionuclide therapy: new advances for improvement of patient management and response. Cancers. 2019 Feb 25;11(2):268.

Rurarz BP, Urbanek KA, Karczmarczyk U, Raczkowska J, Habrowska-Górczyńska DE, Kozieł MJ, Kowalska K, Kadłubowski S, Sawicka A, Maurin M, Piastowska-Ciesielska AW. Towards Cancer Nanoradiopharmaceuticals—Radioisotope Nanocarrier System for Prostate Cancer Theranostics Based on Radiation-Synthesized Polymer Nanogels. Cancers. 2023 Nov 29;15(23):5646.

Gallivanone F, Valente MA, Savi A, Canevari C, Castiglioni I. Targeted radionuclide therapy: frontiers in theranostics.

Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted radionuclide therapy of prostate cancer—from basic research to clinical perspectives. Molecules. 2020 Apr 10;25(7):1743.

Chan TG, O’Neill E, Habjan C, Cornelissen B. Combination strategies to improve targeted radionuclide therapy. Journal of Nuclear Medicine. 2020 Nov 1;61(11):1544-52.

Herrero Álvarez N, Bauer D, Hernández‐Gil J, Lewis JS. Recent advances in radiometals for combined imaging and therapy in cancer. ChemMedChem. 2021 Oct 6;16(19):2909-41.

Chao Y, Liang C, Yang Y, Wang G, Maiti D, Tian L, Wang F, Pan W, Wu S, Yang K, Liu Z. Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers. ACS nano. 2018 Jul 26;12(8):7519-28.

Pérez-Alija J, Gallego P, Linares I, Ambroa E, Pedro A. Publication of interventional phase 3 and 4 clinical trials in radiation oncology: an observational study. BMJ open. 2017 Sep 1;7(9):e016040.

Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. The Lancet Oncology. 2017 Jul 1;18(7):e414-23.

Pei P, Liu T, Shen W, Liu Z, Yang K. Biomaterial-mediated internal radioisotope therapy. Materials Horizons. 2021;8(5):1348-66.

Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted alpha therapy: all we need to know about 225Ac’s physical characteristics and production as a potential theranostic radionuclide. Pharmaceuticals. 2023 Dec 2;16(12):1679.

Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges. Molecules. 2022 Aug 16;27(16):5231.

Nitipir C, Niculae D, Orlov C, Barbu MA, Popescu B, Popa AM, Stoian Pantea AM, Stanciu AE, Galateanu B, Ginghina O, Papadakis GZ. Update on radionuclide therapy in oncology. Oncology letters. 2017 Dec 1;14(6):7011-5.

Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted alpha therapy: all we need to know about 225Ac’s physical characteristics and production as a potential theranostic radionuclide. Pharmaceuticals. 2023 Dec 2;16(12):1679.

Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nature reviews Drug discovery. 2020 Sep 1;19(9):589-608.

Albertsson P, Bäck T, Bergmark K, Hallqvist A, Johansson M, Aneheim E, Lindegren S, Timperanza C, Smerud K, Palm S. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Frontiers in Medicine. 2023 Jan 6;9:1076210.

Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical advances and perspectives in targeted radionuclide therapy. Pharmaceutics. 2023 Jun 14;15(6):1733.

Li Y, Hamlin DK, Chyan MK, Wong R, Dorman EF, Emery RC, Woodle DR, Manger RL, Nartea M, Kenoyer AL, Orozco JJ. cGMP production of astatine-211-labeled anti-CD45 antibodies for use in allogeneic hematopoietic cell transplantation for treatment of advanced hematopoietic malignancies. PLoS One. 2018 Oct 18;13(10):e0205135.

Watabe T, Kaneda-Nakashima K, Ooe K, Liu Y, Kurimoto K, Murai T, Shidahara Y, Okuma K, Takeuchi M, Nishide M, Toyoshima A. Extended single-dose toxicity study of [211 At] NaAt in mice for the first-in-human clinical trial of targeted alpha therapy for differentiated thyroid cancer. Annals of Nuclear Medicine. 2021 Jun;35:702-18.

Watabe T, Hosono M, Kinuya S, Yamada T, Yanagida S, Namba M, Nakamura Y. Manual on the proper use of sodium astatide ([211At] NaAt) injections in clinical trials for targeted alpha therapy. Annals of Nuclear Medicine. 2021 Jul;35(7):753-66.

Sudo H, Tsuji AB, Sugyo A, Nagatsu K, Minegishi K, Ishioka NS, Ito H, Yoshinaga K, Higashi T. Preclinical evaluation of the acute radiotoxicity of the α-emitting molecular-targeted therapeutic agent 211At-MABG for the treatment of malignant pheochromocytoma in normal mice. Translational Oncology. 2019 Jul 1;12(7):879-88.

Albertsson P, Bäck T, Bergmark K, Hallqvist A, Johansson M, Aneheim E, Lindegren S, Timperanza C, Smerud K, Palm S. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Frontiers in Medicine. 2023 Jan 6;9:1076210.

Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted alpha therapy: all we need to know about 225Ac’s physical characteristics and production as a potential theranostic radionuclide. Pharmaceuticals. 2023 Dec 2;16(12):1679.

Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics. 2024;14(7):2969.

Sathekge MM, Lawal IO, Bal C, Bruchertseifer F, Ballal S, Cardaci G, Davis C, Eiber M, Hekimsoy T, Knoesen O, Kratochwil C. Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study. The Lancet Oncology. 2024 Feb 1;25(2):175-83.

Ballal S, Yadav MP, Tripathi M, Sahoo RK, Bal C. Survival outcomes in metastatic gastroenteropancreatic neuroendocrine tumor patients receiving concomitant 225Ac-DOTATATE–targeted α-therapy and capecitabine: a real-world-scenario management-based long-term outcome study. Journal of Nuclear Medicine. 2023 Feb 1;64(2):211-8.

Dekempeneer Y, Caveliers V, Ooms M, Maertens D, Gysemans M, Lahoutte T, Xavier C, Lecocq Q, Maes K, Covens P, Miller BW. Therapeutic efficacy of 213Bi-labeled sdAbs in a preclinical model of ovarian cancer. Molecular Pharmaceutics. 2020 Jul 29;17(9):3553-66.

Bender AA, Kirkeby EK, Cross DJ, Minoshima S, Roberts AG, Mastren TE. Development of a 213Bi-Labeled Pyridyl Benzofuran for Targeted α-Therapy of Amyloid-β Aggregates. Journal of Nuclear Medicine. 2024 Sep 1;65(9):1467-72.

Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, Makoveeva KA, Ovchinnikov MV, Sidorova MV, Chuvilin DY. 212Pb: production approaches and targeted therapy applications. Pharmaceutics. 2022 Jan 13;14(1):189.

Lizak C, Malvezzi F, Saidi A, Mettier M, Vojackova J, Schibli R, Wullschleger S, Kaufmann Y, Lekishvili T, Riesenberg S, Blunschi J. Lead-212 Radio-DARPin Therapeutic (RDT) targeting delta-like ligand 3 (DLL3) shows promising preclinical antitumor efficacy and tolerability in small cell lung cancer (SCLC).

Wang S, Zhang Z, Miao L, Li Y. Boron neutron capture therapy: Current status and challenges. Frontiers in Oncology. 2022 Mar 31;12:788770.

Wang LW, Liu YW, Chou FI, Jiang SH. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Communications. 2018 Dec;38:1-7.

Torres-Sánchez P, Porras I, de Saavedra FA, Praena J. Study of the upper energy limit of useful epithermal neutrons for boron neutron capture therapy in different tissues. Radiation Physics and Chemistry. 2021 Aug 1;185:109490.

Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Advanced materials. 2017 Aug;29(32):1700996.

Zhong X, Yang K, Dong Z, Yi X, Wang Y, Ge C, Zhao Y, Liu Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Advanced Functional Materials. 2015 Dec;25(47):7327-36.

Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuclide‐activated nanomaterials and their biomedical applications. AngewandteChemie International Edition. 2019 Sep 16;58(38):13232-52.

Xu P, Lin S, Wang Y, Abdukayum A, Wang Y. Radionuclide-based Cerenkov luminescence in biomedicine: Current research progress and future perspectives. TrAC Trends in Analytical Chemistry. 2023 Nov 19:117452.

Hamidu A, Pitt WG, Husseini GA. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes. Nanomaterials. 2023 Sep 15;13(18):2566.

Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'Ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B. 2017;5(33):6701-27.

Hossain A, Rayhan MT, Mobarak MH, Rimon MI, Hossain N, Islam S, Al Kafi SA. Advances and significances of gold nanoparticles in cancer treatment: A comprehensive review. Results in Chemistry. 2024 May 24:101559.

Osakada Y, Pratx G, Sun C, Sakamoto M, Ahmad M, Volotskova O, Ong Q, Teranishi T, Harada Y, Xing L, Cui B. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chemical Communications. 2014 Mar 7;50(27):3549-51.

Wang Y, Black KC, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu SY, Li M, Kim P, Li ZY. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS nano. 2013 Mar 26;7(3):2068-77.

Lee SB, Lee HW, Singh TD, Li Y, Kim SK, Cho SJ, Lee SW, Jeong SY, Ahn BC, Choi S, Lee IK. Visualization of macrophage recruitment to inflammation lesions using highly sensitive and stable radionuclide-embedded gold nanoparticles as a nuclear bio-imaging platform. Theranostics. 2017;7(4):926.

Zhao CX, Liu JN, Li BQ, Ren D, Chen X, Yu J, Zhang Q. Multiscale construction of bifunctional electrocatalysts for long‐lifespan rechargeable zinc–air batteries. Advanced Functional Materials. 2020 Sep; 30(36):2003619.

Published

2024-12-15

How to Cite

Sayed Manzer Tasfiya, Shabaray. R.A, & Nayak A Lathika. (2024). Transforming Oncology: Cutting-Edge Developments In Radionuclide Therapies. Asian Journal of Pharmaceutical Research and Development, 12(6), 108–117. https://doi.org/10.22270/ajprd.v12i6.1487