A Systemic Review on Techniques of Solubility Enhancement for Poor Water-Soluble Drugs
DOI:
https://doi.org/10.22270/ajprd.v11i3.1420Abstract
Background Investigating novel methods to improve solubility in order to increase drug absorption along with improving pharmaceutical formulations.
Main body of the abstractThe limited water solubility of active pharmaceutical ingredients constrains their pharmacological efficacy. However, the solubility parameter must not be compromised, necessitating the use of various strategies to improve their bioavailability. The solubility of drugs significantly impacts their pharmacokinetics, pharmacodynamics, as well as other characteristics like drug distribution, protein binding, and absorption. This review article aims to provide a concise overview of both traditional and innovative techniques employed to enhance the solubility of medications that have low solubility. These methods encompass several physical and chemical techniques, such as reducing particle size, creating solid dispersions, micronization using supercritical fluid technology, using cryogenic technology, utilizing complexation, employing hydrotrophy, employing crystal engineering, and developing solid self-emulsifying drug delivery systems. These various methods have contributed to improve the bioavailability of medications that are taken orally by enhancing the solubility of pharmaceuticals that have low water solubility.
Short conclusion Thereview offers comprehensive insights into tactics for enhancing solubility, along with the significance of solubility and the most recent strategies for augmenting it.
Downloads
References
Allen L. V. Ansel H. C. (2014) Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems, London.
Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. International journal of pharmaceutics, 420(1), 1-10. doi: 10.1016/j.ijpharm.2011.08.032.
L. Lachman(1986) The Theory and Practise of Industrial Pharmacy, New Delhi.
Blagden, N., de Matas, M., Gavan, P. T., & York, P. (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced drug delivery reviews, 59(7), 617-630. doi:10.1016/j.addr.2007.05.011.
Speroni, C. S., Bender, A. B. B., Stiebe, J., Ballus, C. A., Ávila, P. F., Goldbeck, R. & Emanuelli, T. (2020) Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. Lwt, 130, 109526.doi:10.1016/j.lwt.2020.109526.
Muller, R. H. (2000) Nanosuspension for the formulation of poorly soluble drugs, in pharmaceutical emulsion and suspension. Neilloud. F. ed. and Marti-Mestres. G. ed 389-404.doi:10.1016/S0378-5173(97)00311-6.
Patravale, V. B., Date, A. A., & Kulkarni, R. M. (2004) Nanosuspensions: a promising drug delivery strategy. Journal of pharmacy and pharmacology, 56(7), 827-840. doi:10.1211/0022357023691.
Albadri, A. A., Almajidi, Y. Q., & Neamah, M. J. (2021) WITHDRAWN: Utilization of nanosuspension technology to enhance solubility of Meclizine HCL. doi:10.1016/j.matpr.2021.04.007.
Muller, R. H., Bohm, B. H. L., Grau, J., & Wise, D. L. (2000) Nanosuspensions: a formulation approach for poorly soluble and poorly bioavailable drugs. Handbook of pharmaceutical controlled release technology, 345-357. doi:10.1016/S0378-5173(97)00311-6.
Merisko-Liversidge, E., Liversidge, G. G., & Cooper, E. R. (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. European journal of pharmaceutical sciences, 18(2), 113-120.doi:10.1016/s0928-0987(02)00251-8.
Liversidge, G. G., & Conzentino, P. (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. International journal of pharmaceutics, 125(2), 309-313.doi: 10.1016/0378-5173(95)00148-C.
Zu, Y., Wu, W., Zhao, X., Li, Y., Wang, W., Zhong, C.& Zhao, X. (2014) Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. International journal of pharmaceutics, 471(1-2), 366-376.doi: 10.1016/j.ijpharm.2014.05.049.
Patravale, V. B., Date, A. A., & Kulkarni, R. M. (2004) Nanosuspensions: a promising drug delivery strategy. Journal of pharmacy and pharmacology, 56(7), 827-840.doi: 10.1211/0022357023691.
Lu, M., Ho, C. T., & Huang, Q. (2017)Improving quercetin dissolution and bio accessibility with reduced crystallite sizes through media milling technique. Journal of functional foods, 37, 138-146.doi.:10.5772/intechopen.101466.
Keck, C. M., & Müller, R. H. (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. European journal of pharmaceutics and biopharmaceutics, 62(1), 3-16.doi:10.1016/j.ejpb.2005.05.009.
Zhou, Y., Fang, Q., Niu, B., Wu, B., Zhao, Y., Quan, G.,& Wu, C. (2018) Comparative studies on amphotericin B nanosuspensions prepared by a high-pressure homogenization method and an antisolvent precipitation method. Colloids and Surfaces B: Biointerfaces, 172, 372-379.doi: 10.1016/j.colsurfb.2018.08.016.
Jinno, J. I., Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., & Kimura, T. (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. Journal of controlled release, 111(1-2), 56-64.doi: 10.1016/j.jconrel.2005.11.013.
Morakul, B., Suksiriworapong, J., Leanpolchareanchai, J., & Junyaprasert, V. B. (2013) Precipitation-lyophilization-homogenizationfor preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. International journal of pharmaceutics, 457(1), 187-196.doi:10.1016/j.ijpharm.2013.09.022.
Graeser, K. A., Patterson, J. E., Zeitler, J. A., & Rades, T. (2010) The role of configurational entropy in amorphous systems. Pharmaceutics, 2(2), 224-244.doi: 10.3390%2Fpharmaceutics2020224.
Branham, M. L., Moyo, T., & Govender, T. (2012) Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. European journal of pharmaceutics and biopharmaceutics, 80(1), 194-202.doi: 10.1016/j.ejpb.2011.08.005.
Pouton, C. W. (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. European journal of pharmaceutical sciences, 29(3-4), 278-287. doi: 10.1016/j.ejps.2006.04.016.
Sohn, J. S., Park, J. W., Choi, D. H., & Choi, J. S. (2020) Design of telmisartan-weak acid solid dispersion to improve its solubility and stability Materials Science and Engineering: B, 261, 114649. doi:10.1016/j.mseb.2020.114649.
Xiong, X., Zhang, M., Hou, Q., Tang, P., Suo, Z., Zhu, Y., & Li, H. (2019) Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Materials Science and Engineering: C, 105, 110012. doi:10.1016/j.msec.2019.110012.
Almotairy, A., Almutairi, M., Althobaiti, A., Alyahya, M., Sarabu, S., Alzahrani, A., & Repka, M. A. (2021) Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. Journal of drug delivery science and technology, 65, 102674doi:10.1016/j.jddst.2021.102674.
Verma, V., Sharma, P., Sharma, J., Lamba, A. K., & Lamba, H. S. (2017) Development, characterization and solubility study of solid dispersion of Quercetin by solvent evaporation method. Materials Today: Proceedings, 4(9), 10128-10133.doi:10.1016/j.matpr.2017.06.334.
Lim, H., Yu, D., & Hoag, S. W. (2021) Application of near-infrared spectroscopy in detecting residual crystallinity in carbamazepine–Soluplus solid dispersions prepared with solvent casting and hot-melt extrusion. Journal of Drug Delivery Science and Technology, 65, 102713.doi:10.1016/j.jddst.2021.102713.
Zaheer, A., Naveen, M., Santosh, M. K., & Imran, K. (2011) Solubility enhancement of poorly water soluble drugs: A review. IJPT, 3(1), 807-82.doi: 10.4103%2F0250-474X.110576.
Lateh, L., Kaewnopparat, N., Yuenyongsawad, S., & Panichayupakaranant, P. (2022) Enhancing the water-solubility of curcuminoids-rich extract using a ternary inclusion complex system: Preparation, characterization, and anti-cancer activity. Food Chemistry, 368, 130827.doi:10.1016/j.foodchem.2021.130827.
Ismail, A., Kerdpol, K., Rungrotmongkol, T., Tananuwong, K., Ueno, T., Ekasit, S.& Krusong, K. (2021) Solubility enhancement of poorly water soluble domperidone by complexation with the large ring cyclodextrin. International Journal of Pharmaceutics, 606, 120909.doi:10.3390/molecules27041446.
Koshy, P., Pacharane, S., Chaudhry, A., Jadhav, K., & Kadam, V. (2010) Drug particle engineering of poorly water-soluble drugs. Der. Pharm. Lett, 2, 65-76.doi: 10.3390%2Fpolym13142262.
Moinuddin, S. M., Ruan, S., Huang, Y., Gao, Q., Shi, Q., Cai, B., & Cai, T. (2017) Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. International journal of pharmaceutics, 532(1), 393-400./doi:10.1016/j.ijpharm.2017.09.020.
Blagden, N., de Matas, M., Gavan, P. T., & York, P. (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced drug delivery reviews, 59(7), 617-630. doi: 10.1016/j.addr.2007.05.011.
Aguiar, A. J., Krc Jr, J., Kinkel, A. W., & Samyn, J. C. (1967) Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. Journal of pharmaceutical sciences, 56(7), 847-853.doi:10.1002/jps.2600560712.
Liebenberg, W., de Villiers, M. M., Wurster, D. E., Swanepoel, E., Dekker, T. G., & Lötter, A. P. (1999)The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders. Drug development and industrial pharmacy, 25(9), 1027-1033.doi:10.1081/ddc-100102265.
Moribe, K., Tozuka, Y., & Yamamoto, K. (2008) Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Advanced Drug Delivery Reviews, 60(3), 328-338.doi:10.1016/j.addr.2007.03.023.
Diniz, L. F., Carvalho Jr, P. S., Pena, S. A., Gonçalves, J. E., Souza, M. A., de Souza Filho, J. D.& Fernandes, C. (2020) Enhancing the solubility and permeability of the diuretic drug furosemide via multicomponent crystal forms. International Journal of Pharmaceutics, 587, 119694. doi:10.1016/j.ijpharm.2020.119694.
Gadade, D. D., Kulkarni, D. A., Rathi, P. B., Pekamwar, S. S., & Joshi, S. S. (2017) Solubility enhancement of lornoxicam by crystal engineering. Indian J Pharm Sci, 79(2), 277-286.doi:10.4172/pharmaceutical-sciences.1000226.
Divya, I. S., Amrutha, S., SeethaLekshmi, S., & Varughese, S. (2021) Molecular salts of quinine: a crystal engineering route to enhance the aqueous solubility. CrystEngComm, 23(39), 6942-6951. doi:10.1039/D1CE00791B.
Ouyang, J., Xing, X., Zhou, L., Zhang, C., & Heng, J. Y. (2022) Cocrystal design of vanillin with amide drugs: Crystal structure determination, solubility enhancement, DFT calculation. Chemical Engineering Research and Design, 183, 170-180.doi:10.1016/j.cherd.2022.05.009.
Remington, J. P. (2006). Remington: the science and practice of pharmacy Lippincott Williams & Wilkins.
Fiese E.F, Hagen T.A. (1990) Preformulation. In: Lachman L, Liberman H.A, Kanig J.L, editors. The theory and practice of industrial pharmacy. Bombay.
Allen L.V, Popovich, N.G, Ansel H.C., (2014) Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems, London.
Venkatesh, S., Li, J., Xu, Y., Vishnuvajjala, R., & Anderson, B. D. (1996) Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid. Pharmaceutical research, 13, 1453-1459.doi:10.1023/a:1016059008464.
McMorland, G. H., Douglas, M. J., Jeffery, W. K., Ross, P. L., Axelson, J. E., Kim, J. H.& Robertson, K. (1986)Effect of pH-adjustment of bupivacaine on onset and duration of epidural analgesia in parturients. Canadian Anaesthetists’ Society Journal, 33, 537-541.doi:10.1007/bf03014257.
Jain, A., Ran, Y., & Yalkowsky, S. H. (2004) Effect of pH-sodium lauryl sulfate combination on solubilization of PG-300995 (an anti-HIV agent): a technical note. Aaps Pharmscitech, 5, 65-67. doi:10.1208/pt050345.
Almotairy, A., Almutairi, M., Althobaiti, A., Alyahya, M., Sarabu, S., Alzahrani, A.& Repka, M. A. (2021) Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. Journal of drug delivery science and technology, 65, 102674.doi:10.1016/j.jddst.2021.102674.
Das, D., Panesar, P. S., & Saini, C. S. (2022) pH shifting treatment of ultrasonically extracted soybean meal protein isolate: Effect on functional, structural, morphological and thermal properties. Process Biochemistry, 120, 227-238.doi:10.1016/j.procbio.2022.06.015.
Strickley, R. G. (2004) Solubilizing excipients in oral and injectable formulations. Pharmaceutical research, 21, 201-230.doi:10.1023/b:pham.0000016235.32639.23.
Millard, J. W., Alvarez-Nunez, F. A., & Yalkowsky, S. H. (2002) Solubilization by cosolvents: Establishing useful constants for the log–linear model. International Journal of Pharmaceutics, 245(1-2), 153-166.doi:10.1016/s0378-5173(02)00334-4.
Strickley, R. G. (1999) Parenteral formulations of small molecules therapeutics marketed in the United StatesPart I. PDA Journal of Pharmaceutical Science and Technology, 53(6), 324-349. doi:10.1016/j.ejpb.2018.07.011.
Zhao, L., Li, P., & Yalkowsky, S. H. (1999) Solubilization of fluasterone. Journal of pharmaceutical sciences, 88(10), 967-969. doi:10.1021/js9901413.
Nayak, A. K., & Panigrahi, P. P. (2012). Solubility enhancement of etoricoxib by cosolvency approach. ISRN Physical Chemistry, 2012, 1-5.doi:10.5402/2012/820653.
Phillips, E. M., & Stella, V. J. (1993) Rapid expansion from supercritical solutions: application to pharmaceutical processes. International journal of pharmaceutics, 94(1-3), 1-10.doi:10.1016/0378-5173(93)90002-W.
Subramaniam, B., Rajewski, R. A., & Snavely, K. (1997) Pharmaceutical processing with supercritical carbon dioxide. Journal of pharmaceutical sciences, 86(8), 885-890. doi:10.1021/js9700661.
Zaheer, A., Naveen, M., Santosh, M. K., & Imran, K. (2011) Solubility enhancement of poorly water-soluble drugs: A review. IJPT, 3(1), 807-82. doi:10.13040/IJPSR.0975-8232.5(8).3123-27.
This innovation has been presented in late 1980s and mid-1990s. Since the main experience of Hannay et al., in 1879
Hourri, A., St-Arnaud, J. M., & Bose, T. K. (1998) Solubility of solids in supercritical fluids from the measurements of the dielectric constant: application to CO 2–naphthalene. Review of Scientific Instruments, 69(7), 2732-2737. doi:10.1063/1.1149007.
Tran, P., & Park, J. S. (2021) Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. International Journal of Pharmaceutics, 610, 121247. doi:10.1016/j.ijpharm.2021.121247.
Sodeifian, G., Hsieh, C. M., Derakhsheshpour, R., Chen, Y. M., & Razmimanesh, F. (2022) Measurement and modeling of metoclopramide hydrochloride (anti-emetic drug) solubility in supercritical carbon dioxide. Arabian Journal of Chemistry, 15(7), 103876.doi:10.1016/j.arabjc.2022.103876.
Di, L., & Kerns, E. H. (2015). Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press.
Martin, A. (1993). Physical pharmacy. Physical chemical principles in the pharmaceutical sciences, London.
Rangel-Yagui, C. D. O., Pessoa Jr, A., & Tavares, L. C. (2005) Micellar solubilization of drugs. J. Pharm. Pharm. Sci, 8(2), 147-163.doi:16124926.
Seedher, N., & Kanojia, M. (2008) Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. Aaps Pharmscitech, 9, 431-436.doi:10.1208%2Fs12249-008-9057-5.
Rasool, A. A., Hussain, A. A., & Dittert, L. W. (1991) Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. Journal of pharmaceutical sciences, 80(4), 387-393.Doi:10.1002/jps.2600800422.
Badwan, A. A., ElKhordagui, L. K., Saleh, A. M., & Khalil, S. A. (1982) The solubility of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization. International journal of Pharmaceutics, 13(1), 67-74.doi:10.1016/0378-5173(82)90143-0
Bhise, S., Chaulang, G., Patel, P., Patel, B., Bhosale, A., & Hardikar, S. (2009) Superdisintegrants as solubilizing agent, Research J. Pharm. and Tech, 2009; 2 (2): 387, 391. doi:10.4274%2Ftjps.74946.
Truelove, J., Bawarshi-Nassar, R., Chen, N. R., & Hussain, A. (1984) Solubility enhancement of some developmental anti-cancer nucleoside analogs by complexation with nicotinamide. International journal of pharmaceutics, 19(1), 17-25. doi:10.1016/0378-5173(84)90128-5.
Zaheer, A., Naveen, M., Santosh, M. K., & Imran, K. (2011) Solubility enhancement of poorly water-soluble drugs: A review. IJPT, 3(1), 807-82. doi:10.13040/IJPSR.0975-8232.5(8).3123-27.doi:10.4103%2F2229-4708.103893.
Asnani, G., Jadhav, K., Dhamecha, D., Sankh, A., & Patil, M. (2012) Development and validation of spectrophotometric method of cefpodoxime proxetil using hydrotropic solubilizing agents. Pharmaceutical methods, 3(2), 117-120. doi:10.4103%2F2229-4708.103893.
Dixit, M., & Kulkarni, P. K. (2012) Lyophilization monophase solution technique for improvement of the solubility and dissolution of piroxicam. Research in Pharmaceutical Sciences, 7(1), 13. doi:23181075
Tang, B., Cheng, G., Gu, J. C., & Xu, C. H. (2008) Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug discovery today, 13(13-14), 606-612.doi:10.1016/j.drudis.2008.04.006.
Deshmukh, S. R., Bakhle, S. S., Upadhye, K. P., & Dixit, G. R. (2016) Formulation and evaluation of solid self-emulsifying drug delivery system of Gliclazide. Int J Pharm Pharm Sci, 8(11), 144-151.doi:10.22159/ijpps.2016v8i11.14104.
Brewster, M. E., & Loftsson, T. (2007) Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews, 59(7), 645-666. doi:10.1016/j.addr.2007.05.012.
Singh, A., Worku, Z. A., & Van den Mooter, G. (2011) Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert opinion on drug delivery, 8(10), 1361-1378.doi:10.1517/17425247.2011.606808.
Brewster, M. E., & Loftsson, T. (2007) Cyclodextrins as pharmaceutical solubilizers. Advanced drug delivery reviews, 59(7), 645-666. doi:10.1016/j.addr.2007.05.012.
Carrier, R. L., Miller, L. A., & Ahmed, I. (2007) The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release, 123(2), 78-99. doi:10.1016/j.jconrel.2007.07.018.
Rasheed, A. (2008) Cyclodextrins as drug carrier molecule: a review. Scientia Pharmaceutica, 76(4), 567-598. doi:10.3797/scipharm.0808-05.
Becket, G., Schep, L. J., & Tan, M. Y. (1999) Improvement of the in vitro dissolution of praziquantel by complexation with α-, β-and γ-cyclodextrins. International journal of pharmaceutics, 179(1), 65-71. doi:10.1016/s0378-5173(98)00382-2.
Wang, X., Parvathaneni, V., Shukla, S. K., Kanabar, D. D., Muth, A., & Gupta, V. (2020)Cyclodextrin complexation for enhanced stability and non-invasive pulmonary delivery of resveratrol—applications in non-small cell lung cancer treatment. Aaps Pharmscitech, 21, 1-14.doi:10.1208/s12249-020-01724-x.
Bader, H., Ringsdorf, H., & Schmidt, B. (1984) Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 123(1), 457-485.doi:10.1016%2Fj.jconrel.2022.08.032.
Jones, M. C., & Leroux, J. C. (1999) Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 48(2), 101-111. doi:10.1016/s0939-6411(99)00039-9.
Jones, M. C., & Leroux, J. C. (1999)Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 48(2), 101-111. doi:10.1016/s0939-6411(99)00039-9.
Lukyanov, A. N., & Torchilin, V. P. (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Advanced drug delivery reviews, 56(9), 1273-1289.doi:10.1016/j.addr.2003.12.004. er, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J. C. (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 109(1-3), 169-188.doi:10.1016/j.jconrel.2005.09.034.
Wintzingerode, F., Göbel, U. B., & Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS microbiology reviews, 21(3), 213-229. doi:10.1111/j.1574-6976.1997.tb00351.
Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J. C. (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 109(1-3), 169-188. doi:10.1016/j.jconrel.2005.09.034.
Kwon, G. S., & Okano, T. (1996) Polymeric micelles as new drug carriers. Advanced drug delivery reviews, 21(2), 107-116. doi:10.1016/S0169-409X(96)00401-2.
Majumder, N., G Das, N., & Das, S. K. (2020). Polymeric micelles for anticancer drug delivery. Therapeutic delivery, 11(10), 613-635. doi:10.4155/tde-2020-0008.
Fahr, A., & Liu, X. (2007) Drug delivery strategies for poorly water-soluble drugs. Expert opinion on drug delivery, 4(4), 403-416.doi:10.1517/17425247.4.4.403.
Mohammed, A. R., Weston, N., Coombes, A. G. A., Fitzgerald, M., & Perrie, Y. (2004) Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. International journal of pharmaceutics, 285(1-2), 23-34.doi:10.1016/j.ijpharm.2004.07.010.
Zhang, J. A., Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., & Ahmad, I. (2005). Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. European journal of pharmaceutics and biopharmaceutics, 59(1), 177-187. doi:10.1016/j.ejpb.2004.06.009.
Ghanbarzadeh, S., Valizadeh, H., & Zakeri-Milani, P. (2013) The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Advanced pharmaceutical bulletin, 3(1), 25.doi:10.5681%2Fapb.2013.005.
Zhang, J. A., Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., & Ahmad, I. (2005) Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. European journal of pharmaceutics and biopharmaceutics, 59(1), 177-187. doi:10.1016/j.ejpb.2004.06.009.
Yang, T., Cui, F. D., Choi, M. K., Lin, H., Chung, S. J., Shim, C. K., & Kim, D. D. (2007) Liposome formulation of paclitaxel with enhanced solubility and stability. Drug delivery, 14(5), 301-308. doi:10.1080/10717540601098799.
Yang, T., Cui, F. D., Choi, M. K., Cho, J. W., Chung, S. J., Shim, C. K., & Kim, D. D. (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. International journal of Pharmaceutics, 338(1-2), 317-326. doi:10.1080/10717540601098799.
Gharib, R., Haydar, S., Charcosset, C., Fourmentin, S., & Greige-Gerges, H. (2019). First study on the release of a natural antimicrobial agent, estragole, from freeze-dried delivery systems based on cyclodextrins and liposomes. Journal of Drug Delivery Science and Technology, 52, 794-802. doi:10.1016/j.jddst.2019.05.032.
Üner, M., & Yener, G. (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International journal of nanomedicine, 2(3), 289-300. doi:18019829.
Müller, R. H., Mäder, K., & Gohla, S. (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics, 50(1), 161-177. doi:10.1016/s0939-6411(00)00087-4.
Mehnert, W., & Mäder, K. (2012) Solid lipid nanoparticles: production, characterization and applications. Advanced drug delivery reviews, 64, 83-101.doi:10.1016/s0169-409x(01)00105-3.
Hu, L., Tang, X., & Cui, F. (2004). Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. Journal of Pharmacy and Pharmacology, 56(12), 1527-1535. doi:10.1211/0022357044959.
Onugwu, A. L., Attama, A. A., Nnamani, P. O., Onugwu, S. O., Onuigbo, E. B., & Khutoryanskiy, V. V. (2022). Development and optimization of solid lipid nanoparticles coated with chitosan and poly (2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. Journal of Drug Delivery Science and Technology, 74, 103527. doi:10.1016/j.jddst.2022.103527.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Dr. Prasad Deshmukh, Sangam Nimkar, Amruta Phuse, Dipti Ruikar, Dipti Bonde

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
AUTHORS WHO PUBLISH WITH THIS JOURNAL AGREE TO THE FOLLOWING TERMS:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 Unported License. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).