Preventive Mechanism, Therapeutic Property,Pharmacokinetics And Benefitsof Asiatic Acid - A Triterpenoid Of Centella Asiatica In Alzheimer Disease: An In-Depth Review

Authors

  • Sudipta Chakraborty Department of Pharmacognosy,BCDA College of Pharmacy Technology, 78, Jessore Rd, (South), Hridaypur, Barasat, Kolkata, West Bengal 700127
  • Abhipsa Sinha Department of Pharmacology,BCDA College of Pharmacy Technology Campus 2,52, C/10, Ghoshpara Rd, Udairajpur, Madhyamgram, Kolkata, West Bengal 700129

DOI:

https://doi.org/10.22270/ajprd.v11i4.1302

Keywords:

Asiatic acid, dementia, BBB, Alzheimer disease, triterpenoid, neuroprotective, anti-cholinesterase

Abstract

Alzheimer's disease (AD) remains the most prevalent form of age-related dementia worldwide, and it has no cure. Memory loss, difficulty communicating, depression, agitation, mood swings, and psychosis all develop gradually in this disorder. Reduced physical activity, infection, smoking, and the prevalence of diseases like obesity and diabetes all pose a risk for the development of AD. Current synthetic medications only alleviate symptoms by targeting a single molecule, so they can't deal with the complex pathogenesis of AD. The scientific community is actively working to characterise therapeutic agents derived from plants that have shown promise in the literature in treating AD due to their perceived efficacy, safety, and availability. Traditional Chinese medicine includes the use of the plant Centella asiatica for its purported benefits to cognitive performance and memory. Pentacyclic triterpenes are largely responsible for its therapeutic and medicinal effects, which include accelerated enhanced memory. These pentacyclic triterpenoids are asiaticoside and madecassoside as saponins and their aglycones, asiatic acids and madecassic acids. Amongst other triterpenoid Asiatic acid has several therapeutic properties against AD like anti-cholinesterase, neuroprotective and anti-inflammatory. This review focused on the pathophysiology of AD followed by a detailed account on Asiatic acid and the research findings to date related to its mechanism of action on AD, advantage over other two terpenoid, BBB permeability, Pharmacokinetic, molecular docking and different therapeutic activities.

 

Downloads

Download data is not yet available.

Author Biographies

Sudipta Chakraborty, Department of Pharmacognosy,BCDA College of Pharmacy Technology, 78, Jessore Rd, (South), Hridaypur, Barasat, Kolkata, West Bengal 700127

Department of Pharmacognosy,BCDA College of Pharmacy Technology, 78, Jessore Rd, (South), Hridaypur, Barasat, Kolkata, West Bengal 700127

Abhipsa Sinha, Department of Pharmacology,BCDA College of Pharmacy Technology Campus 2,52, C/10, Ghoshpara Rd, Udairajpur, Madhyamgram, Kolkata, West Bengal 700129

Department of Pharmacology,BCDA College of Pharmacy Technology Campus 2,52, C/10, Ghoshpara Rd, Udairajpur, Madhyamgram, Kolkata, West Bengal 700129

References

1. Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A. Therapeutic Potential of Phytoconstituents in Management of Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine. 2021;2021:1-19.
2. Singh AK, Mishra G, Maurya A, Awasthi R, Kumari K, Thakur A, Rai A, Rai GK, Sharma B, Kulkarni GT, Singh SK. Role of TREM2 in Alzheimer's Disease and its Consequences on β- Amyloid, Tau and Neurofibrillary Tangles. Curr Alzheimer Res. 2019;16(13):1216-1229.
3. Abbas S, Latif M, Shafie N, Ghazali M, Abidin N, Mustafa M, et al. A review of antioxidant and anti-acetylcholinesterase activities of Centella asiatica (L.) Urb. for the treatment of Alzheimer’s disease. Food Res. 2021;5(2):1-17.
4. Awasthi M, Upadhyay AK, Singh S, Pandey VP, Dwivedi UN. Terpenoids as promising therapeutic molecules against Alzheimer’s disease: amyloid beta- and acetylcholinesterase-directed pharmacokinetic and molecular docking analyses. Molecular Simulation. 2018;44(1):1-11.
5. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI. Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules. 2020;25(15):3353.
6. Azerad R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia. 2016;114:168-87.
7. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem. 2015;30(1):11-26.
8. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biology. 2018;15:490-503.
9. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer's Disease. Med Princ Pract. 2015;24(1):1-10.
10. Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1105-1121.
11. Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012;33(5):578-87.
12. Mehla J, Gupta P, Pahuja M, Diwan D, Diksha D. Indian Medicinal Herbs and Formulations for Alzheimer’s Disease, from Traditional Knowledge to Scientific Assessment. Brain Sciences. 2020;10(12):964.
13. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6(1):19-33.
14. Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol. 2020; 11.
15. Sabaragamuwa R, Perera CO, Fedrizzi B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends in Food Science & Technology. 2018;79:88-97.
16. James J, Dubery I. Pentacyclic Triterpenoids from the Medicinal Herb, Centella asiatica (L.) Urban. Molecules. 2009;14(10):3922-41.
17. Lawal OM, Wakel F, Dekker M. Consumption of fresh Centella asiatica improves short term alertness and contentedness in healthy females. Journal of Functional Foods. 2021;77:104337.
18. Pratibha Singh; Singh, J.S.Recruitment and competitive interaction between ramets ans seedlings in a perennial medicinal herb,Centella asiatica,Basic and Applied Ecology.2002 3(1): 65-76
19. Ahmad Rather M, Justin Thenmozhi A, Manivasagam T, Dhivya Bharathi M, Essa MM, Guillemin GJ. Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer's disease. Front Biosci (Schol Ed). 2018;10(2):262-275.
20. Puttarak P, Dilokthornsakul P, Saokaew S, Dhippayom T, Kongkaew C, Sruamsiri R. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: A Systematic Review and Meta-analysis. Sci Rep. 2017;7(1)
21. Tohid H. Anti-glutamic acid decarboxylase antibody positive neurological syndromes. NSJ. 2016;21(3):215-22.
22. Orhan IE. Centella asiatica(L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential. Evidence-Based Complementary and Alternative Medicine. 2012;2012:1-8.
23. Li Y, Yang F, Yuan M, Jiang L, Yuan L, Zhang X, et al. Synthesis and evaluation of asiatic acid derivatives as anti-fibrotic agents: Structure/activity studies. Steroids. 2015;96:44-9.
24. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR. Blood-Brain Barrier Permeability of Asiaticoside, Madecassoside and Asiatic Acid in Porcine Brain Endothelial Cell Model. Journal of Pharmaceutical Sciences. 2021;110(2):698-706.
25. Nasir M, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J. Effects of asiatic acid on passive and active avoidance task in male Spraque–Dawley rats. Journal of Ethnopharmacology. 2011;134(2):203-9.
26. Biswas D, Mandal S, Chatterjee Saha S, Tudu CK, Nandy S, Batiha GE. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytotherapy Research. 2021;35(12):6624-54.
27. Mills J, Reiner PB. Regulation of Amyloid Precursor Protein Cleavage. Journal of Neurochemistry.1999;72(2):443-60.
28. Haque SE, Iqubal A, Iqubal MK, Fazal SA, Pottoo FH. Nutraceuticals and their Derived Nano-Formulations for the Prevention and Treatment of Alzheimer's Disease. CMP. 2021;15(1):23-50.
29. Fezoui Y, Teplow DB. Kinetic Studies of Amyloid β-Protein Fibril Assembly. Journal of Biological Chemistry. 2002;277(40):36948-54.
30. Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer’s Disease and its Management Using Plant Natural Products. MRMC. 2021;21(1):35-57.
31. Kumar Thakur A, Kamboj P, Goswami K, Ahuja K. Pathophysiology and management of alzheimer’s disease: an overview. JAPLR. 2018;7(2).
32. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R. Clearance of amyloid-β by circulating lipoprotein receptors. Nat Med. 2007;13(9):1029-31.
33. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106(12):1489-99.
34. Kim GH, Kim JE, Rhie SJ, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol. 2015;24(4):325-40.
35. Liu Z, Zhang A, Sun H, Han Y, Kong L, Wang X. Two decades of new drug discovery and development for Alzheimer's disease. RSC Adv. 2017;7(10):6046-58.
36. Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell AdhMigr. 2009;3(1):88-93.
37. Agrawal I, Jha S. Mitochondrial Dysfunction and Alzheimer’s Disease: Role of Microglia. Front Aging Neurosci, 2020;12
38. Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL. Reactive oxygen species and Alzheimer's disease. Biochemical Pharmacology. 1997;54(5):533-9.
39. Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine. 2013;62:90-101.
40. Tyagi E, Agrawal R, Nath C, Shukla R. Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. Journal of Neuroimmunology. 2008;205(1-2):51-6.
41. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-7.
42. Zorec R, Parpura V, Vardjan N, Verkhratsky A. Astrocytic face of Alzheimer’s disease. Behavioural Brain Research. 2017;322:250-7.
43. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712-6.
44. Liu C, Zhao N, Fu Y, Wang N, Linares C, Tsai C, et al. ApoE4 Accelerates Early Seeding of Amyloid Pathology. Neuron. 2017;96(5):1024-1032.
45. Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133-50.
46. Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci USA. 2018;115(28)
47. Arranz AM, De Strooper B. The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications. The Lancet Neurology. 2019;18(4):406-14.
48. Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. Clinical Biochemistry. 2019;72:87-9.
49. Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegeneration. 2018;13(1)
50. Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation. 2023;46(1):1-17.
51. Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacol. 2021;29(6):1669-81.
52. Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe?. Mol Neurobiol, 2017;54(10):8071-89.
53. Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738-48.
54. Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiology of Aging. 2004;25(1):5-18.
55. Onyango IG, Jauregui GV, Čarná M, Bennett JP, Stokin GB. Neuroinflammation in Alzheimer’s Disease. Biomedicines. 2021;9(5):524.
56. Wang J, Song Y, Chen Z, Leng SX. Connection between Systemic Inflammation and Neuroinflammation Underlies Neuroprotective Mechanism of Several Phytochemicals in Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity. 2018;2018:1-16.
57. Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol. 2019;10:1114.
58. Verkhratsky A, Olabarria M, Noristani HN, Yeh C, Rodriguez JJ. Astrocytes in Alzheimer’s disease. Neurotherapeutics. 2010;7(4):399-412.
59. Greenwald BS, Davis KL. Experimental pharmacology of Alzheimer disease. Adv Neurol. 1983;38:87-102.
60. Hampel H, Mesulam M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917-33.
61. Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci. 2017;24(1):46-54.
62. Chase TN, Farlow MR, Clarence-Smith K. Donepezil Plus Solifenacin (CPC-201) Treatment for Alzheimer’s Disease. Neurotherapeutics. 2017;14(2):405-16.
63. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59.
64. Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA. 1986;83(11):4044-8.
65. Brion JP. The role of neurofibrillary tangles in Alzheimer disease. Acta Neurol Belg.1998;98(2):165-74.
66. Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Front Neurosci. 2018;12.
67. Paula VdJRd, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer's disease: Amyloid-beta, TAU protein or both?. Dement neuropsychol. 2009;3(3):188-94.
68. Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. BioMed Research International. 2018;2018:1-8.
69. Weekley CM, He C. Developing drugs targeting transition metal homeostasis. Current Opinion in Chemical Biology. 2017;37:26-32.
70. Bush AI. The Metal Theory of Alzheimer's Disease. JAD. 2012;33(s1):S277-S281.
71. Bush A, Pettingell W, Multhaup G, d Paradis M, Vonsattel J, Gusella J. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994;265(5177):1464-7.
72. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, et al. Metal Binding and Oxidation of Amyloid-β within Isolated Senile Plaque Cores:  Raman Microscopic Evidence. Biochemistry. 2003;42(10):2768-73.
73. Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free RadicBiol Med. 2002;32(11):1076-83.
74. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β‐amyloid. FASEB j. 2004;18(12):1427-9.
75. Gh Popescu BF, Nichol H. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease. CNS Neuroscience & Therapeutics. 2011;17(4):256-68.
76. Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International. 2013;62(5):575-94.
77. Graham SF, Nasaruddin MB, Carey M, Holscher C, McGuinness B, Kehoe PG. Age-Associated Changes of Brain Copper, Iron, and Zinc in Alzheimer's Disease and Dementia with Lewy Bodies. JAD. 2014;42(4):1407-13.
78. White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, et al. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Research.1999;842(2):439-44.
79. Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiological Reviews. 2005;85(1):201-79.
80. Wang Y, Shi Y, Wei H. Calcium Dysregulation in Alzheimer's Disease: A Target for New Drug Development. J Alzheimers Dis Parkinsonism. 2017;7(5)
81. Benarroch EE. Neuronal voltage-gated calcium channels: Brief overview of their function and clinical implications in neurology. Neurology. 2010;74(16):1310-5.
82. Schampel A, Kuerten S. Danger: High Voltage—The Role of Voltage-Gated Calcium Channels in Central Nervous System Pathology. Cells. 2017;6(4):43.
83. Stutzmann GE. Calcium Dysregulation, IP3 Signaling, and Alzheimer’s Disease. Neuroscientist. 2005;11(2):110-5.
84. Misquitta C, Mack D, Grover A. Sarco/endoplasmic reticulum Ca2+(SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium. 1999;25(4):277-90.
85. Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer's disease – A therapeutic opportunity?. Biochemical and Biophysical Research Communications. 2017;483(4):998-1004.
86. Ferreiro E, Oliveira CR, Pereira CM. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiology of Disease. 2008;30(3):331-42.
87. Castillo C, Martinez JC, Longart M, García L, Hernández M, Carballo J, et al. Extracellular Application of CRMP2 Increases Cytoplasmic Calcium through NMDA Receptors. Neuroscience. 2018;376:204-23.
88. Park J, Seo YH, Jang J, Jeong C, Lee S, Park B. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflammation. 2017;14(1)
89. Ahmad Rather M, Justin-Thenmozhi A, Manivasagam T, Saravanababu C, Guillemin GJ, Essa MM. Asiatic Acid Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress and Apoptosis Via AKT/GSK-3β Signaling Pathway in Wistar Rats. Neurotox Res. 2019;35(4):955-68.
90. Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer's disease animal model. Phytother Res. 2009;23(1):14-9.
91. Veerendra Kumar M, Gupta Y. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. Journal of Ethnopharmacology. 2002;79(2):253-60.
92. Chen C, Tsai W, Chen C, Pan T. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. Journal of Traditional and Complementary Medicine. 2016;6(4):362-9.
93. Soumyanath A, Zhong Y, Henson E, Wadsworth T, Bishop J, Gold BG. Centella asiaticaExtract Improves Behavioral Deficits in a Mouse Model of Alzheimer's Disease: Investigation of a Possible Mechanism of Action. International Journal of Alzheimer's Disease. 2012;2012:1-9.
94. Loganathan C, Thayumanavan P. Asiatic acid prevents the quinolinic acid-induced oxidative stress and cognitive impairment. Metab Brain Dis. 2018;33(1):151-9.
95. Patil SP, Maki S, Khedkar SA, Rigby AC, Chan C. Withanolide A and Asiatic Acid Modulate Multiple Targets Associated with Amyloid-β Precursor Protein Processing and Amyloid-β Protein Clearance. J Nat Prod. 2010;73(7):1196-202.
96. Zhang X, Wu J, Dou Y, Xia B, Rong W, Rimbach. Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. European Journal of Pharmacology. 2012;679(1-3):51-9.
97. Kim SR, Koo KA, Lee MK, Park H, Jew S, Cha K, et al. Asiatic acid derivatives enhance cognitive performance partly by improving acetylcholine synthesis. Journal of Pharmacy and Pharmacology. 2010;56(10):1275-82.
98. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI. Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiaticaMolecules. 2020;25(15):3353.
99. Cheng W, Chen W, Wang P, Chu J. Asiatic acid protects differentiated PC12 cells from Aβ25–35-induced apoptosis and tau hyperphosphorylation via regulating PI3K/Akt/GSK-3β signaling. Life Sciences. 2018;208:96-101.
100. Nasir M, Abdullah J, Habsah M, Ghani R, Rammes G. Inhibitory effect of asiatic acid on acetylcholinesterase, excitatory post synapticpotential and locomotor activity. Phytomedicine. 2012;19(3-4):311-6.
101. Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules. 2021;11(4):543.
102. Zahara K. Clinical and therapeutic benefits of Centella asiatica. PAB. 2014; 3(4):152-9.
103. Abbas S, Latif M, Shafie N, Ghazali M, Abidin N, Mustafa M, et al. A review of antioxidant and anti-acetylcholinesterase activities of Centella asiatica (L.) Urb. for the treatment of Alzheimer’s disease. Food Res. 2021; 5(2):1-17.
104. Shukla SD, Bhatnagar M, Khurana S. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response. Front Neurosci. 2012;6
105. Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012; 33(5):578-87.
106. Paidi RK, Sarkar S, Ambareen N, Biswas SC. Medha Plus – A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer’s disease. Biomedicine & Pharmacotherapy. 2022; 151:113086.
107. Xu M, Xiong Y, Liu J, Qian J, Zhu L, Gao J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012; 33(5):578-87.
108. Gray NE, Zweig JA, Matthews DG, Caruso M, Quinn JF, Soumyanath A. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons. Oxidative Medicine and Cellular Longevity. 2017;2017:1-8.
109. Sabaragamuwa R, Perera CO, Fedrizzi B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends in Food Science & Technology. 2018;79:88-97.
110. Mato L, Wattanathorn J, Muchimapura S, Tongun T, Piyawatkul N, Yimtae K. Centella asiaticaImproves Physical Performance and Health-Related Quality of Life in Healthy Elderly Volunteer. Evidence-Based Complementary and Alternative Medicine. 2011;2011:1-7.
111. Abbas S, Latif M, Shafie N, Ghazali M, Abidin N, Mustafa M. A review of antioxidant and anti-acetylcholinesterase activities of Centella asiatica (L.) Urb. for the treatment of Alzheimer’s disease. Food Res. 2021;5(2):1-17.
112. Orhan G, Orhan I, Sener B. Recent Developments in Natural and Synthetic Drug Research for Alzheimers Disease LDDD. 2006;3(4):268-74.
113. Mukherjee PK, Kumar V, Houghton PJ. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother Res. 2007;21(12):1142-5.
114. Ahmad Rather M, Justin Thenmozhi A, Manivasagam T, Dhivya Bharathi M, Essa MM, Guillemin GJ. Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer's disease. Front Biosci (Schol Ed). 2018;10(2):262-275.
115. Hafiz ZZ, Amin M‘M, Johari James RM, Teh LK, Salleh MZ, Adenan MI. Inhibitory Effects of Raw-Extract Centella asiatica (RECA) on Acetylcholinesterase, Inflammations, and Oxidative Stress Activities via In Vitro and In Vivo. Molecules. 2020;25(4):892.
116. I Adenan M, A Jusril N, A Radzun K, Z Hafiz Z. Comparative Study on Anti-Acetylcholinesterase and Anti-Inflammatory Activities of Date and Apple Vinegars Fortified with Centella Asiatica. IJET. 2019;7(4.14):116.
117. Mukherjee PK, Kumar V, Houghton PJ. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother Res. 2007;21(12):1142-5.
118. H. Nour, A., M. Khan, A. Z. Sulaiman, T. Batool, A. H. Nour, M. Mumtaz Khan, and F. Kormin. In Vitro Anti-Acetyl Cholinesterase and Antioxidant Activity of Selected Malaysian Plants”. Asian Journal of Pharmaceutical and Clinical Research. 2014 ;7(3): 93-97,
119. Mathew M, Subramanian S. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders. PLoS ONE. 2014;9(1):e86804..
120. Nasir M, Abdullah J, Habsah M, Ghani R, Rammes G. Inhibitory effect of asiatic acid on acetylcholinesterase, excitatory post synapticpotential and locomotor activity. Phytomedicine. 2012;19(3-4):311-6.
121. Boopathy R, Chitra L, Srilakshmi Prabha N, Babu SA. P2‐233: Effect of asiatic acid on hippocampal cell line: A novel inhibitor of acetylcholinesterase from Centella asiatica. Alzheimer's & Dementia. 2009;5(4S_Part_11)
122. Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutritional Neuroscience.2017;20(6):351-9.
123. Heikkila R. Effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine on neostriatal dopamine in mice. Neuropharmacology.1984;23(6):711-3.
124. Justin Thenmozhi A. Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer rsquo s disease. Front Biosci. 2018;10(1):287-99.
125. Sun T, Liu B, Li P. Nerve Protective Effect of Asiaticoside against Ischemia-Hypoxia in Cultured Rat Cortex Neurons. Med Sci Monit. 2015;21:3036-41.
126. Umka Welbat J, Sirichoat A, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Pakdeechote P. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival. Nutrients. 2016;8(5):303.
127. Nasir M, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J. Effects of asiatic acid on passive and active avoidance task in male Spraque–Dawley rats. Journal of Ethnopharmacology. 2011;134(2):203-9.
128. Jiang W, Li M, He F, Bian Z, He Q, Wang X, et al. Neuroprotective effect of asiatic acid against spinal cord injury in rats. Life Sciences. 2016;157:45-51.
129. Nasir M, Abdullah J, Habsah M, Ghani R, Rammes G. Inhibitory effect of asiatic acid on acetylcholinesterase, excitatory post synapticpotential and locomotor activity. Phytomedicine. 2012;19(3-4):311-6.
130. Nasir M, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J. Effects of asiatic acid on passive and active avoidance task in male Spraque–Dawley rats. Journal of Ethnopharmacology. 2011;134(2):203-9.
131. Kappettu Gadahad MR, Rao M, Rao G. Enhancement of Hippocampal CA3 Neuronal Dendritic Arborization by Centella asiatica (Linn) Fresh Leaf Extract Treatment in Adult Rats. Journal of the Chinese Medical Association. 2008;71(1):6-13.
132. Patil SP, Maki S, Khedkar SA, Rigby AC, Chan C. Withanolide A and Asiatic Acid Modulate Multiple Targets Associated with Amyloid-β Precursor Protein Processing and Amyloid-β Protein Clearance. J Nat Prod. 2010;73(7):1196-202.
133. Chassaud LF, Fry BJ, Hawkins DR, Lewis JD, Sword IP, Taylor T, Hathway DE. The metabolism of asiatic acid,-madecassic acid and asiaticoside in the rat. Arzneimittelforschung. 1971;21(9):1379-84
134. Xiao W, Jiang W, Li K, Hu Y, Li S, Zhou L, Wan R. Protective effect of asiatic acid in an experimental cerulein-induced model of acute pancreatitis in mice. Am J Transl Res. 2017;9(8):3842-3852
135. Chassaud LF, Fry BJ, Hawkins DR, Lewis JD, Sword IP, Taylor T, Hathway DE. The metabolism of asiatic acid,-madecassic acid and asiaticoside in the rat Arzneimittelforschung. 1971;21(9):1379-84.
136. Bossé JP, Papillon J, Frenette G, Dansereau J, Cadotte M, Le Lorier J. Clinical study of a new antikeloid agent. Ann Plast Surg.1979;3(1):13-21.
137. Schubert M. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. European Journal of Pharmaceutics and Biopharmaceutics. 2003;55(1):125-31.
138. Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC–MS method. Journal of Ethnopharmacology. 2015;163:31-8.
139. Guo L, Cui Y, Hao K. Effects of glycyrrhizin on the pharmacokinetics of asiatic acid in rats and its potential mechanism. Pharmaceutical Biology. 2018;56(1):119-23.
140. Songvut P, Chariyavilaskul P, Tantisira M, Khemawoot P. Safety and Pharmacokinetics of Standardized Extract of Centella asiatica (ECa 233) Capsules in Healthy Thai Volunteers: A Phase 1 Clinical Study. Planta Med, 2019;85(06):483-90.
141. KOBASHI K, AKAO T. Relation of Intestinal Bacteria to Pharmacological Effects of Glycosides. Bioscience Microflora. 1997;16(1):1-7.
142. Wright KM, Bollen M, David J, Speers AB, Brandes MS, Gray NE, Alcázar Magaña A, McClure C, Stevens JF, Maier CS, Quinn JF, Soumyanath A. Pharmacokinetics and Pharmacodynamics of Key Components of a Standardized Centella asiatica Product in Cognitively Impaired Older Adults: A Phase 1, Double-Blind, Randomized Clinical Trial. Antioxidants (Basel). 2022;11(2):215.
143. Tan SC, Bhattamisra SK, Chellappan DK, Candasamy M. Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. Applied Sciences.2021;11(18):8475.
144. Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC–MS method. Journal of Ethnopharmacology. 2015;163:31-8.
145. Zheng X, Wang S. Determination of asiatic acid in beagle dog plasma after oral administration of Centella asiatica extract by precolumn derivatization RP-HPLC. Journal of Chromatography B. 2009;877(5-6):477-81.
146. Nair SN, Menon S, Shailajan S. A liquid chromatography/electrospray ionization tandem mass spectrometric method for quantification of asiatic acid from plasma: application to pharmacokinetic study in rats. Rapid Commun Mass Spectrom. 2012;26(17):1899-908.
147. Begum S, Nizami SS, Mahmood U, Masood S, Iftikhar S, Saied S. In-vitro evaluation and in-silico studies applied on newly synthesized amide derivatives of N-phthaloylglycine as Butyrylcholinesterase (BChE) inhibitors. Computational Biology and Chemistry. 2018;74:212-7.
148. Speck-Planche A, Cordeiro MNDS. Advanced In Silico Approaches for Drug Discovery: Mining Information from Multiple Biological and Chemical Data Through mtk- QSBER and pt-QSPR Strategies, CMC. 2017;24(16)
149. Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694-718.
150. R.M J, Ray A, Naik D, Sanyal D, Shah D. Review and Research Analysis of Computational Target Methods Using BioRuby and in silico Screening of Herbal Lead Compounds Against Pancreatic Cancer Using R Programming, CDM. 2014;15(5):535-43.
151. Dong -Chan KimFinding the Novel Effect of Asiatic acid as aPotential Anti -neuroinflammatory Agent Using Microglia Cell System and In Silico Molecular Docking Technology, International Journal of Engineering Research and Technology.2018;11(12):2089-2098
152. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI. Combining in Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules. 2020;25(15):3353.
153. Kua J, Zhang Y, Eslami AC, Butler JR, McCammon JA. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci. 2003;12(12):2675-84.
154. Shi S, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K. Rapid Spine Delivery and Redistribution of AMPA Receptors After Synaptic NMDA Receptor Activation. Science. 1999;284(5421):1811-6.
155. Bagchi P, M A, Kar A. Pharmacophore Screening and Docking studies of AMPA Receptor Implicated in Alzheimer’s disease with Some CNS Acting Phytocompounds from Selected Ayurvedic Medicinal Plants. Neuropsychiatry. 2018;08(03)
156. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41-53.
157. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiology of Disease. 2010;37(1):13-25.
158. Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol.2018;14(3):133-50.
159. Li Di , Edward H. Kerns , Ian F. Bezar , Susan L. Petusky , Youping Huang Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBBJournal of Pharmaceutical Sciences. 2009;98( 6): 1980-1991
160. Chen X, Zhang Y, Zhao P, Chen Y, Zhou Y, Wang S, et al. Preparation and evaluation of PEGylated asiatic acid nanostructured lipid carriers on anti-fibrosis effects. Drug Development and Industrial Pharmacy. 2020;46(1):57-69.
161. Patel PJ, Acharya NS, Acharya SR. Development and characterization of glutathione-conjugated albumin nanoparticles for improved brain delivery of hydrophilic fluorescent marker. Drug Delivery. 2013;20(3-4):143-55.
162. Halder T, Patel B, Acharya N. Asiatic Acid Fabricated Nanoconstructs to Mitigate Amyloid Beta1-42 Induced Injury in SH-SY5Y Cells In-Vitro and Ameliorates Cognitive Impairment by Dual Cholinesterase Inhibition and Attenuation of Oxidative Stress In-Vivo. Pharm Res. 2023;40(1):197-213.
163. Raval N, Mistry T, Acharya N, Acharya S. Development of glutathione-conjugated asiatic acid-loaded bovine serum albumin nanoparticles for brain-targeted drug delivery. Journal of Pharmacy and Pharmacology. 2015;67(11):1503-11.
164. Hanapi NA, Mohamad Arshad AS, Abdullah JM, Tengku Muhammad TS, Yusof SR. Blood-Brain Barrier Permeability of Asiaticoside, Madecassoside and Asiatic Acid in Porcine Brain Endothelial Cell Model. Journal of Pharmaceutical Sciences. 2021;110(2):698-706.
165. Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol. 2018;9
166. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of Blood-Brain Barrier Crossing of Drugs Using Molecular Size and Shape, and H-Bonding Descriptors. Journal of Drug Targeting. 1998;6(2):151-65.
167. Nasir M, Habsah M, Zamzuri I, Rammes G, Hasnan J, Abdullah J. Effects of asiatic acid on passive and active avoidance task in male Spraque–Dawley rats. Journal of Ethnopharmacology. 2011;134(2):203-9.
168. J. Cott, Medicinal plants and dietary supplements: sources for innovative treatment or adjuncts, Psychopharmacol Bull.1995;31(1):131–7
169. Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, et al. Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev. 2018;17(1):161-94.
170. Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC–MS method. Journal of Ethnopharmacology. 2015;163:31-8.
171. T Poovizhi , V Krishnaprabha and L Uthira Perspective study on Pharmacological and Therapeutic potential of Centella asiatica,” Medicon Medical Sciences. 2022;2(5)02-11.
172. Qi Z, Ci X, Huang J, Liu Q, Yu Q, Zhou J, et al. Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation. Biomedicine & Pharmacotherapy. 2017;88:252-9.
173. Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, Jew SS, Jung MW. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res. 1999;58(3):417-25.
174. Y. Boondam, P. Songvut, M. H. Tantisira, S. Tapechum, K. Tilokskulchai, and N. Pakaprot, Inverted U-shaped response of a standardized extract of Centella asiatica (ECa 233) on memory enhancement,Sci Rep.2019; 9(1):8404.

Published

2023-08-13

How to Cite

Chakraborty, S., & Sinha, A. (2023). Preventive Mechanism, Therapeutic Property,Pharmacokinetics And Benefitsof Asiatic Acid - A Triterpenoid Of Centella Asiatica In Alzheimer Disease: An In-Depth Review. Asian Journal of Pharmaceutical Research and Development, 11(4), 162–176. https://doi.org/10.22270/ajprd.v11i4.1302