STABILITY INDICATING RP-HPLC METHOD FOR SELEGILINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATION

Rahul C. Kalaskar, M.A. Nagras,*

Sinhgad College of Pharmacy, Department of Quality Assurance Techniques, Vadgaon (Bk.), Pune – 411041, India

Received: July 2014 Revised and Accepted: August 2014

ABSTRACT

Stability indicating RP-HPLC method has been developed for the determination of Selegiline hydrochloride in pharmaceutical formulation. Chromatographic separation of Selegiline hydrochloride and its known impurities was achieved by using BDS Hypersil C18 (250 x 4.6 mm, 5 µm) column at temperature of 40˚C. Mobile phase composed of Acetonitrile:Potassium di-hydrogen phosphate buffer adjusted at pH 4.0±0.5 (30:70v/v). Flow rate was 1.00 ml per min and the absorbance was measured at 205nm. The retention time of Selegiline hydrochloride was 5.7min, at runtime 10min. System suitability parameters like, tailing factor 1.1 and theoretical plates 6010 were calculated. The linearity of the method was evaluated from 25µg per ml to 100µg per ml for Selegiline hydrochloride by injecting 50µl of standard solution giving correlation coefficient 0.999. The developed method can be used or applied for the quantification of Selegiline hydrochloride in pharmaceutical products.

Keywords: Selegiline Hydrochloride, RP-HPLC, Validation and Degradation.

INTRODUCTION

Selegiline hydrochloride is an selective, irreversible inhibitor of MAO-type B; MAO-B metabolizes dopamine and phenylethylamine. Selegiline hydrochloride exhibits little therapeutic benefit when used independently, but enhances and prolongs the anti-Parkinson effects of levodopa. Selegiline hydrochloride is widely used in Parkinson’s disease and also may be given with Levodopa upon onset of disability, in the treatment of mild to moderate Alzheimer disease and at the higher doses for the treatment of depression.

Chemically, Selegiline hydrochloride is (R)-(-)-N-2-propynylphenethylamine hydrochloride [1-3]. Selegiline hydrochloride is absorbed from GIT, bioavailability 4-5% (oral, fasted), 20% (oral, after food) and half life is about 1.5(oral, single dose). Metabolism occurs in liver and excretion through urine. Selegiline hydrochloride is soluble in water and methanol, Routeof administration of Selegiline hydrochloride is oral and transdermal dosage form. Based on literature survey, some HPLC methods are reported for determination of Selegiline hydrochloride [4-6]. However, stability methods are not reported on Selegiline hydrochloride. So, the present study is to develop a stability indicating RP-HPLC method for estimation of Selegiline hydrochloride in pharmaceutical formulation. The developed HPLC method is precise, robust, specific, sensitive and accurate and has been validated as per ICH guidelines [7].
MATERIALS AND METHODS:

Instrumentation:

High Performance Liquid Chromatography (Shimadzu HPLC, LC-2010 CHT), UV detector and BDS Hypersil C18 column (250 x 4.6 mm, 5 µm).

Reagents and Chemicals:

AR grade of potassium dihydrogen phosphate and HPLC Grade of methanol, acetonitrile were used for analysis. They were purchased from Merck Chemicals, Mumbai and LOBA Chemical Pvt. Ltd., Mumbai. HPLC grade water was obtained from Elga Lab water purifier.

All purified standard materials (not less than 98.5%) were used. Marketed formulation which is available in 5 mg strength of tablets (SELGIN – Intaspharma) were analysed with this method.

Chromatographic Conditions:

Mobile phase composed of Acetonitrile: Potassium dihydrogen phosphate buffer (dissolved 2.04 gram in 1000 ml of HPLC grade water and adjusted the pH to 4.00 ± 0.05 with ortho phosphoric acid), Acetonitrile and Buffer was in the ratio of 30:70(v/v) respectively. Injection volume was 50µl with flow rate1.00ml per minute. Detection of the Selegiline hydrochloride was achieved by using a UV detector and absorbance measured at 205nm. BDS Hypersil C18 column (250mm x 4.6mm,5µm) and column oven temperature maintained at 40°C.

RESULTS AND DISCUSSION:

Selection of analytical wavelength (λmax) by ultraviolet spectroscopy (UV):

UV spectra of 10 µg/ml solution of Selegiline hydrochloride standard in HPLC grade water was scanned between 200-400 nm with medium scan speed against HPLC grade water blank and recorded the absorbance obtained at 205 nm, where maximum absorption occurs, showed in Figure 2.
Method development:

Method development trials were performed with Potassium phosphate, monobasic ammonium phosphate and acetate buffers and different organic modifiers such as methanol, acetonitrile and water but the peak shape of Selegiline hydrochloride was poor. Finally after 5 trails, the resolution and sharp peak shapes were achieved with, Hypersil C18 (250mm x 4.6mm, 5µm) column and the separation was achieved by Potassium dihydrogen phosphate buffer and acetonitrile. Based on Selegiline hydrochloride absorbance spectra, samples absorbance was measured at 205nm. See Selegiline hydrochloride HPLC chromatogram was represented in Figure 3. The retention time of Selegiline hydrochloride was 5.78min, at runtime 10.0min.

Method Validation [7]:

Validation was performed as per ICH Q2 (R1) guidelines for parameters like specificity, precision, accuracy, linearity and range, robustness, limit of detection and limit of quantification.

Linearity and Range

Dilutions of Selegiline hydrochloride shows good correlation coefficient in concentration range of 25-100µg/ml ($r^2=0.999$). Linearity was evaluated for a set of six standard working solutions containing 25-100µg/ml for Selegiline hydrochloride. The linear regression data is presented in Table I. The linearity of calibration graphs and adherence of the system to Beer’s law was validated by determining correlation coefficient and S.D. values which were found to be well within the accepted limit as per ICH guidelines.
Table I: Linear regression data for calibration curves

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SelegilineHCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range µg/ml</td>
<td>25-100µg/ml</td>
</tr>
<tr>
<td>r^2 ± SD*</td>
<td>0.999</td>
</tr>
<tr>
<td>Slope ± SD*</td>
<td>52862 ± 179</td>
</tr>
<tr>
<td>Intercept ± SD*</td>
<td>17052 ± 987</td>
</tr>
</tbody>
</table>

*n=6

Precision studies

Results of precision were satisfactory as per ICH guidelines. Repeatability was studied by injecting six replicates of the working standard (50 µg/ml). The results for repeatability studies of HPLC are shown in Table II.

Table II: Repeatability studies

<table>
<thead>
<tr>
<th>Precision</th>
<th>Amount (µg/ml)</th>
<th>Area</th>
<th>Mean Area ± SD*</th>
<th>%RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability (*n=6)</td>
<td>50</td>
<td>2413224</td>
<td>2414198±2596.783</td>
<td>0.107</td>
</tr>
<tr>
<td>50</td>
<td>2417586</td>
<td>2415937</td>
<td>2416216</td>
<td>2410139</td>
</tr>
</tbody>
</table>

Intraday and Inter-day

Intraday precision studies were performed by 3 repeated injections of standard drug solutions at three concentrations (40, 50 and 60 µg/ml). Inter day precision studies were performed using same concentrations on three different days over a period of 1 week. Precision was expressed as % relative standard deviation values. The results for intra-day and inter day precision studies of HPLC were satisfactory as per ICH guidelines are shown in Table III and Table IV.

Table III: Intraday precision studies

<table>
<thead>
<tr>
<th>Precision</th>
<th>Amount (µg/ml)</th>
<th>Area</th>
<th>Mean Area ± SD</th>
<th>%RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-day (*n=3)</td>
<td>40</td>
<td>2291231</td>
<td>2293013 ± 2060.30</td>
<td>0.089</td>
</tr>
<tr>
<td>50</td>
<td>2317331</td>
<td>2318295</td>
<td>2320055 ± 3194.53</td>
<td>0.137</td>
</tr>
<tr>
<td>50</td>
<td>2323910</td>
<td>2322120</td>
<td>2346053 ± 3258.85</td>
<td>0.138</td>
</tr>
<tr>
<td>60</td>
<td>2392129</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV: Inter-day precision studies

<table>
<thead>
<tr>
<th>Precision</th>
<th>Amount (µg/ml)</th>
<th>Area</th>
<th>Mean Area ± SD</th>
<th>%RSD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-day</td>
<td>40</td>
<td>2345580</td>
<td>2342139 ± 15174.98</td>
<td>0.647</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2325539</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>2355298</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2413851</td>
<td>2424318 ± 17465.01</td>
<td>0.720</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2410177</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2448926</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2455098</td>
<td>2432409 ± 21462.11</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2403605</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2438525</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy (Recovery studies)

Drug sample when at three given concentration levels (80%, 100%, 120%) showed satisfactory recovery of Selegiline hydrochloride. The mean recovery was found to be 99.75%. The limit for mean recovery is 90-107%. Thus the method was found to be accurate as per ICH guidelines. The data is represented in Table V.

Table V: Results for accuracy studies

<table>
<thead>
<tr>
<th>Spike level</th>
<th>Amount added (µg/ml)</th>
<th>Area</th>
<th>Amount recovered (µg/ml)</th>
<th>% Recovery</th>
<th>Mean recovery ± S.D.</th>
<th>% R.S.D.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>40</td>
<td>1896756</td>
<td>40.43</td>
<td>101.09</td>
<td>100.67 ± 0.42</td>
<td>0.4172</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1881081</td>
<td>40.10</td>
<td>100.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2399666</td>
<td>49.91</td>
<td>99.83</td>
<td>99.75 ± 0.0775</td>
<td>0.0776</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2384499</td>
<td>49.84</td>
<td>99.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120%</td>
<td>60</td>
<td>2833550</td>
<td>58.87</td>
<td>98.11</td>
<td>98.87 ± 0.755</td>
<td>0.763</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>2811169</td>
<td>59.78</td>
<td>99.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*n=2

Acceptance criteria: % Recovery 98-102 & % RSD ≤ 2

Robustness of the Method

Each factor described under section 1.2.8(IV) of ICH guidelines was changed at three levels (-1, 0, 1). One factor was changed at one time to estimate the effect. Robustness of the method was evaluated at a concentration level 50µg/ml for Selegiline hydrochloride. Results are presented in Table VI. Insignificant differences in peak areas and less variability in retention time were observed, indicating that robustness of Selegiline hydrochloride were satisfactory as per ICH guidelines.

LOD & LOQ

The LOD and LOQ values for Selegiline hydrochloride are shown in Table VII.
Table VI: Robustness data in terms of retention time for Selegiline hydrochloride (change in flow rate, temperature and wavelength)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>SelegilineHCl (t_R in min)</th>
<th>Peak area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Change in Flow Rate (1 ml/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>-2</td>
<td>7.1</td>
<td>3120125</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5.7</td>
<td>2416077</td>
</tr>
<tr>
<td>1.2</td>
<td>+2</td>
<td>4.7</td>
<td>2135177</td>
</tr>
<tr>
<td>% RSD*</td>
<td></td>
<td></td>
<td>0.162</td>
</tr>
<tr>
<td>B: Change in temperature (40°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38°C</td>
<td>-2</td>
<td>5.9</td>
<td>2187393</td>
</tr>
<tr>
<td>40°C</td>
<td>0</td>
<td>5.7</td>
<td>2162031</td>
</tr>
<tr>
<td>42°C</td>
<td>+2</td>
<td>6.01</td>
<td>2167679</td>
</tr>
<tr>
<td>% RSD*</td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>C: Change in Wavelength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>-3</td>
<td>5.6</td>
<td>2529539</td>
</tr>
<tr>
<td>205</td>
<td>0</td>
<td>5.7</td>
<td>2412969</td>
</tr>
<tr>
<td>208</td>
<td>+3</td>
<td>5.8</td>
<td>2490103</td>
</tr>
<tr>
<td>% RSD*</td>
<td></td>
<td></td>
<td>0.239</td>
</tr>
</tbody>
</table>

Table VII: LOD and LOQ

<table>
<thead>
<tr>
<th>Parameters</th>
<th>LOD (µg/ml)</th>
<th>LOQ(µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelegilineHCl</td>
<td>0.061</td>
<td>0.186</td>
</tr>
</tbody>
</table>

System Suitability Parameters

System suitability tests (resolution, tailing factor, theoretical plates) were performed to verify the resolution and reproducibility of the chromatographic system. System suitability parameters for the optimized method were found to be within the acceptable limit as per ICH guidelines.

Forced degradation studies [8]:

Stress studies were carried out on the drug sample according to ICH guideline Q1A (R2). The Selegiline HCl was subjected to different stress conditions like acid induced, base induced, neutral, dry heat and hydrogen peroxide. The stress conditions were optimized in such way that the drug will degrade at least 20-30%.

Acid Induced Degradation

SelegilineHCl was treated with 0.1M HCl solution at 80°C for 6 hrs and showed no degradation. The chromatogram is shown in Figure 5.

Base induced degradation

Selegiline HCl was treated with 0.1M NAOH solution at 80°C for 6 hrs and showed no degradation. The chromatogram is shown in Figure 6.

Hydrogen Peroxide Degradation

Selegiline HCl was treated with hydrogen peroxide (3%) solution at room temperature for 15 mins. The degradation peaks were obtained at 4.76 mins and 5.36 mins along with peak of Selegiline hydrochloride at 5.82. The degradation was found to be 59.59%. The chromatogram is shown in Figure 7.
Dry heat degradation

Accurately weighed 50mg of Selegiline Hydrochloride evenly spread in separate petridish and kept in oven at 105°C for 24 hours. It showed no degradation. The chromatogram is shown in Figure 8.

Fig. 4: Calibration curve for linearity of Selegiline hydrochloride dilutions.

\[
y = 52683x - 16063 \\
R^2 = 0.999
\]

Figure 5: Chromatogram of acid degradation (0.1M HCl, 6hrs at 80°C), \(t_R = 5.81 \)

Figure 6: Chromatogram of base degradation (0.1M NaOH, 6hrs at 80°C), \(t_R = 5.79 \)
Figure 7: Chromatogram of peroxide (3\% H$_2$O$_2$, 15 mins.), \(t_R\) 5.82 (Selegiline hydrochloride), 4.76 and 5.36 (Degradation products of Selegiline hydrochloride)

Figure 8: Chromatogram of Dry heat degradation (24hrs at 105°C), \(t_R\) 5.83 Selegiline hydrochloride

Figure 9: Chromatogram of Neutral degradation (HPLC grade water, 6hrs at 80°C), \(t_R\) 5.85 Selegiline hydrochloride.

Neutral degradation
SelegilineHCl was treated with HPLC grade water at 80°C for 6 hrs and showed no degradation. The chromatogram is shown in Figure 9. Results of the forced degradation studies are enlisted in Table VIII.
Table VIII: Results of forced degradation studies of Selegiline hydrochloride

<table>
<thead>
<tr>
<th>Stress condition</th>
<th>Amount SelegilineHCl degraded (%)</th>
<th>Amount SelegilineHCl recovered (%)</th>
<th>t<sub>of degraded products (min)</t></th>
<th>Relative retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5M HCl (6hrs at 80°C)</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5M NaOH (6hrs at 80°C)</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub> (15min. at RT)</td>
<td>59.59</td>
<td>40.41</td>
<td>4.7, 5.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Dry heat (24hrs at 105°C)</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neutral (6hrs at 80°C)</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CONCLUSION:
A new precise, accurate, robust, stability indicating RP-HPLC method has been developed for the estimation of Selegiline hydrochloride (API) and in pharmaceutical formulation. The method was validated per ICH guidelines the results for which were within specified limits. The developed method was applied for the stability studies of Selegiline hydrochloride in pharmaceutical dosage form. The results of forced degradation studies reveal that the method is stability indicating. The proposed method has the capability to separate the analyte from their degradation products obtained during forced degradation studies. The method can be employed for the routine analysis of Selegiline hydrochloride.

ACKNOWLEDGEMENT
The authors wish to acknowledge Sinhgad College of Pharmacy, Vadgaon(Bk.), Pune - 411041, India, for providing necessary facilities and resources to carry out this work.

REFERENCES: