
Sanap  et al                                                                                 Asian Journal of Pharmaceutical Research and Development. 2025; 13(5): 152-160 

ISSN: 2320-4850                                                                                               [152]                                                     CODEN (USA): AJPRHS 

Available online on 15.10.2025 at http://ajprd.com  

Asian Journal of Pharmaceutical Research and Development  

Open Access to Pharmaceutical and Medical Research 

© 2013-25, publisher and licensee AJPRD, This is an Open Access article which permits unrestricted non-
commercial use, provided the original work is properly cited 

Open  Access                                                                                                                                                                                  Review Article 

Reimagining Drug Potential: Machine Learning As A Catalyst In Drug 
Repurposing 

Sanap Mayuri P*, Prof. B.T. Jagtap  

Institution: Pravara Rural Education Society’s College of Pharmacy (For Women), Chincholi, Nashik, 

422102, Maharashtra, India. 
 

 

A B S T R A C T 
 

Drug discovery has long been a cornerstone of medical progress, yet the conventional path of developing new therapeutics is 

notoriously lengthy, costly, and fraught with uncertainty. On average, it requires more than a decade of intensive research, 

billions of dollars in investment, and multiple phases of preclinical and clinical testing to bring a single novel drug to market. 

Despite such efforts, the attrition rate remains strikingly high, with only a small fraction of candidates achieving regulatory 

approval. In this context, drug repurposing, also known as drug repositioning, has emerged as a pragmatic and highly valuable 

strategy to address unmet medical needs and optimise available therapeutic resources. The history of drug repurposing is deeply 

embedded in the evolution of modern pharmacology. Early examples demonstrate how serendipitous observations, clinical 

experiences, and detailed pharmacological studies gave new life to compounds originally designed for unrelated purposes. 

Aspirin, first introduced as an analgesic and antipyretic, was later recognised for its antiplatelet effects, transforming it into a 

cornerstone therapy for cardiovascular diseases. Thalidomide, infamous for its teratogenic effects, was subsequently repurposed 

as an immunomodulatory drug to treat multiple myeloma and leprosy-related complications. Sildenafil, initially developed for 

angina, gained global recognition when repurposed for erectile dysfunction and later for pulmonary arterial hypertension.  
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INTRODUCTION 

rug discovery has long been a cornerstone of 

medical progress, yet the conventional path of 

developing new therapeutics is notoriously 

lengthy, costly, and fraught with uncertainty. On average, it 

requires more than a decade of intensive research, billions of 

dollars in investment, and multiple phases of preclinical and 

clinical testing to bring a single novel drug to market.      

Despite such efforts, the attrition rate remains strikingly high, 

with only a small fraction of candidates achieving regulatory 

approval. In this context, drug repurposing, also known as 

drug repositioning, has emerged as a pragmatic and highly 

valuable strategy to address unmet medical needs and 

optimise available therapeutic resources. The history of drug 

repurposing is deeply embedded in the evolution of modern 

pharmacology. Early examples demonstrate how 

serendipitous observations, clinical experiences, and detailed 

pharmacological studies gave new life to compounds 

originally designed for unrelated purposes. Aspirin, first 

introduced as an analgesic and antipyretic, was later 

recognised for its antiplatelet effects, transforming it into a 
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cornerstone therapy for cardiovascular diseases. Thalidomide, 

infamous for its teratogenic effects, was subsequently 

repurposed as an immunomodulatory drug to treat multiple 

myeloma and leprosy-related complications. Sildenafil, 

initially developed for angina, gained global recognition 

when repurposed for erectile dysfunction and later for 

pulmonary arterial hypertension. These milestones illustrate 

the enduring value of repurposing as both a scientific 

opportunity and a clinical necessity. What makes drug 

repurposing particularly attractive is its ability to bypass 

several hurdles associated with traditional drug discovery. 

Since the pharmacokinetics, safety profiles, and toxicological 

data of existing drugs are already well-characterised, the time 

and cost required to advance them into new therapeutic 

domains are substantially reduced. Moreover, repurposing 

minimises the risks of unforeseen adverse effects, thereby 

offering greater confidence in clinical outcomes. This 

characteristic not only accelerates patient access to therapies 

but also provides a sustainable approach for tackling rare, 

neglected, and emergent diseases where new drug 

development may not be economically feasible. An equally 

important aspect lies in the versatility of repurposed drugs. 

Many approved compounds demonstrate 

polypharmacology—the ability to interact with multiple 

molecular targets. This feature allows them to be repositioned 

across diverse therapeutic areas, ranging from oncology and 

infectious diseases to neurological and autoimmune 

disorders. Furthermore, the repurposing paradigm aligns well 

with the principles of precision medicine, as drugs can be 

matched with specific patient populations based on their 

molecular or physiological characteristics. The ideal 

characteristics of a drug suitable for repurposing extend 

beyond established safety and pharmacokinetics. A strong 

candidate typically possesses well-documented mechanisms 

of action, broad-spectrum biological activity, and a 

favourable therapeutic index. Additionally, compounds with 

structural diversity or known interactions with multiple 

signalling pathways tend to have higher repurposing 

potential. Drugs with extensive post-marketing surveillance 

data also offer valuable insights into long-term tolerability, 

further strengthening their candidacy for repositioning. The 

relevance of drug repurposing has been repeatedly validated 

during times of medical urgency. The global health crisis 

brought on by the COVID-19 pandemic highlighted its value 

once again, as researchers rapidly turned to existing 

pharmacological libraries to identify possible antiviral and 

supportive treatments. This unprecedented situation 

underscored the adaptability and resilience of the repurposing 

framework in addressing urgent therapeutic gaps under 

pressing timeline. 

Importance of Machine Learning in Drug Repurposing 

Drug discovery has been a complex, costly, and time-

intensive process that requires an average of 10–15 years and 

billions of dollars before a new molecule reaches the market 

[1]. Traditional approaches had focused on de novo drug 

design, but the high attrition rates during preclinical and 

clinical phases had hindered success [2]. In this context, drug 

repurposing has emerged as a strategic alternative that 

leverages the existing safety profiles of approved drugs for 

novel therapeutic uses, thereby reducing costs and 

development timelines [3]. Machine learning (ML) tools have 

gained significance in drug repurposing because they have 

allowed the rapid integration and analysis of high-

dimensional biomedical data, including genomics, 

proteomics, transcriptomics, and clinical records [4]. These 

computational methods had enhanced the prediction of drug–

target interactions, disease–gene associations, and phenotype 

similarities, which had been crucial for identifying new 

therapeutic indications of old drugs [5]. The importance of 

ML-based drug repurposing had been highlighted during 

global health emergencies, such as the COVID-19 pandemic, 

where computational pipelines had accelerated the 

identification of repurposed candidates like remdesivir, 

hydroxychloroquine, and baricitinib [6]. Beyond pandemics, 

ML has been applied to chronic and rare diseases, providing 

hope for patients where traditional R&D pipelines have not 

delivered [7]. Thus, the incorporation of ML in drug 

repurposing had not only promised cost-efficiency but had 

also advanced precision medicine strategies by aligning 

therapies with patient-specific molecular signatures [8]. 

Conventional Methods of Machine Learning in Drug 

Repurposing 

Early ML applications in drug repurposing had relied on 

supervised, unsupervised, and semi-supervised learning 

approaches that had processed structured biomedical data [9]. 

Supervised learning methods such as support vector machines 

(SVM), random forests (RF), and logistic regression have 

been used to classify drug–disease relationships based on 

labelled training datasets [10]. These models had predicted 

whether a drug could be repurposed for a specific disease by 

learning from known positive and negative associations [11]. 

Unsupervised learning approaches, such as clustering and 

dimensionality reduction, had been employed when labelled 

data had been limited. Clustering algorithms like k-means 

and hierarchical clustering had grouped drugs based on 

similarity in chemical structures, transcriptomic responses, or 

adverse effect profiles, thereby uncovering potential shared 

therapeutic targets [12]. Principal component analysis (PCA) 

and t-distributed stochastic neighbour embedding (t-SNE) 

had facilitated visualisation of drug–disease interaction 

networks in reduced dimensions [13]. Semi-supervised 

learning had been advantageous because it had combined 

small labelled datasets with large unlabelled biomedical 

repositories. For instance, graph-based semi-supervised 

models had integrated heterogeneous data sources such as 

drug–target interactions, protein–protein interaction 
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networks, and disease ontologies to infer novel drug–disease 

links [14]. Another conventional ML strategy had involved 

similarity-based prediction, where chemical structure 

similarity, side-effect similarity, and gene-expression 

similarity had been used to match drugs to new indications. 

For example, Campillo et al. (2008) [15] had demonstrated 

that drugs with overlapping side-effect profiles often shared 

molecular targets, which had provided a basis for 

repositioning. Connectivity Map (CMap) analyses had 

matched disease gene-expression signatures with drug-

induced transcriptional responses to identify therapeutic 

reversals [16]. Furthermore, ensemble learning techniques 

have been widely employed in conventional repurposing 

studies. Random forests and gradient boosting methods had 

aggregated predictions from multiple weak learners to 

improve accuracy in identifying candidate drugs [17]. These 

approaches had proven beneficial in high-throughput 

screening datasets, where noise and variability had posed 

challenges to single-model predictions. Despite their promise, 

conventional ML methods had faced limitations. They had 

depended heavily on feature engineering, requiring domain 

expertise to select relevant molecular descriptors, pathway 

features, or pharmacological parameters [18]. Moreover, 

these methods had struggled with scalability when applied to 

modern big data sources such as single-cell transcriptomics 

or electronic health records [19]. 

Drug repurposing had not been a novel concept; several drugs 

had already been repositioned successfully for new 

indications even before machine learning tools had been 

widely adopted [20]. These cases have illustrated the 

feasibility and practicality of repositioning strategies in 

pharmaceutical research. 

Examples of Drugs Which Had Been Reused Before for 

Other Diseases: 

1. Sildenafil (Viagra®: Sildenafil had originally been 

developed by Pfizer as an anti-hypertensive and anti-

anginal agent, targeting phosphodiesterase type 5 (PDE5) 

[21]. During clinical trials, it had failed to show sufficient 

efficacy in angina but had demonstrated a remarkable 

effect in treating erectile dysfunction [22]. This 

serendipitous observation had led to its repositioning and 

eventual blockbuster success. Later, sildenafil had also 

been approved for pulmonary arterial hypertension, 

further proving its repurposing potential [23]. 

2. Thalidomide: Thalidomide had been withdrawn in the 

1960s due to teratogenic effects when it had been 

prescribed for morning sickness in pregnant women [24]. 

However, decades later, researchers had discovered its 

immunomodulatory and anti-angiogenic properties [25]. 

This had paved the way for its repurposing in the 

treatment of multiple myeloma and leprosy-associated 

erythema nodosum leprosum. 

3. Minoxidil: Minoxidil had initially been developed as an 

oral antihypertensive agent due to its vasodilatory effect 

[26]. During clinical use, patients had been observed to 

experience hypertrichosis (excessive hair growth) as a 

side effect. This had ultimately led to its topical 

reformulation and approval for androgenic alopecia 

treatment [27]. 

4. Zidovudine (AZT): Zidovudine had first been synthesised 

in 1964 as a potential anti-cancer drug but had failed in 

oncology [28]. In the 1980s, it had been repurposed as the 

first approved antiretroviral drug for HIV/AIDS after it 

had shown potent inhibition of reverse transcriptase [29]. 

5. Methotrexate: Methotrexate was originally designed as a 

chemotherapeutic agent targeting rapidly dividing cancer 

cells [30]. Later, its immunosuppressive properties had 

been recognised, and it had been repurposed for the 

treatment of autoimmune conditions such as rheumatoid 

arthritis and psoriasis [31]. 

6. Aspirin: Aspirin (acetylsalicylic acid) was first developed 

as an analgesic and anti-inflammatory drug [32]. Over 

time, it had been repurposed for cardiovascular disease 

prevention due to its antiplatelet activity, which had 

reduced the risk of myocardial infarction and stroke [33]. 

7. Remdesivir: Originally developed for Ebola virus disease, 

remdesivir was later repurposed as one of the first 

antiviral drugs authorised for emergency use against 

COVID-19 [34]. Although its efficacy had been debated, 

its rapid repositioning had underscored the importance of 

computational drug repurposing during pandemics. 

8. Baricitinib: Baricitinib, a Janus kinase (JAK) inhibitor 

used for rheumatoid arthritis, had been identified through 

AI-driven repurposing pipelines as a potential treatment 

for COVID-19 due to its dual antiviral and anti-

inflammatory properties [35]. The drug had subsequently 

received emergency approval. 

Innovative Applications of Machine Learning in Drug 

1. Network-based Approaches: One of the most innovative 

applications of ML in drug repurposing has been the 

development of network-based methods. Biological 

systems had been represented as interconnected networks 

of proteins, genes, metabolites, and diseases [36]. 

Machine learning algorithms had been applied to analyse 

these complex networks to identify potential repurposing 

opportunities. For instance, drug–disease bipartite 

networks, drug–target interaction networks, and disease–

gene association graphs had been constructed to identify 

hidden therapeutic links [37]. Graph neural networks 



Sanap  et al                                                                                 Asian Journal of Pharmaceutical Research and Development. 2025; 13(5): 152-160 

ISSN: 2320-4850                                                                                               [155]                                                     CODEN (USA): AJPRHS 

(GNNs) have further advanced this area by learning node 

embeddings that capture topological and biological 

similarity across networks [38]. 

2. Deep Learning Applications: Deep learning has 

represented a paradigm shift in repurposing strategies. 

Convolutional neural networks (CNNs) had been used to 

predict drug–target binding by learning from structural 

and chemical features [39]. Recurrent neural networks 

(RNNs) have been employed to model sequential 

biological data such as protein amino acid sequences or 

drug SMILES strings [40]. Autoencoders had been 

applied to reduce dimensionality and extract meaningful 

latent representations from large-scale omics datasets, 

enabling the discovery of repurposable drug candidates 

[41]. Generative adversarial networks (GANs) had also 

been utilised to simulate novel drug–disease associations 

by generating synthetic but biologically plausible data 

points that had complemented limited real-world datasets 

[42]. These methods had enhanced the ability to 

generalise predictions across diverse therapeutic areas. 

3. Multi-Omics Integration: An innovative frontier in ML-

driven repurposing has been the integration of multi-

omics data. Transcriptomic, proteomic, metabolomic, and 

epigenomic datasets had been combined to provide 

holistic views of disease mechanisms and drug responses 

[43]. ML algorithms such as multi-kernel learning and 

ensemble frameworks have been applied to harmonise 

diverse data modalities. For example, integrating 

transcriptomic profiles with drug-induced perturbation 

signatures has enabled the identification of repurposing 

candidates for neurodegenerative diseases [11]. 

4. Real-World Evidence (RWE) Mining: Electronic health 

records (EHRs), insurance claims, and patient registries 

have offered real-world evidence that has been mined 

using machine learning for repurposing purposes. Natural 

language processing (NLP) algorithms had extracted 

drug–disease relationships from unstructured clinical 

notes [44]. For instance, retrospective EHR analysis had 

suggested the antidiabetic drug metformin as a potential 

anti-cancer candidate by identifying lower cancer 

incidence among diabetic patients treated with metformin 

[45]. ML-enhanced RWE analysis had therefore 

uncovered repositioning opportunities that had been less 

apparent in controlled experimental datasets. 

5. Drug Combination Repurposing: Innovative ML 

applications have also explored drug combinations, where 

two or more existing drugs have been identified to act 

synergistically for new indications. Machine learning 

methods such as matrix factorisation and deep 

reinforcement learning have been used to predict 

synergistic effects of drug pairs [46]. This had been 

particularly relevant in oncology and infectious diseases, 

where combination therapy had been standard practice. 

6. Patient-Specific Repurposing: Personalised or precision 

medicine approaches have also benefited from innovative 

ML applications. Algorithms had stratified patients based 

on genetic or phenotypic profiles to identify subgroups 

that had been more likely to respond to a repurposed drug 

[47]. For example, ML-driven transcriptomic analysis had 

suggested that certain cancer patients with specific gene-

expression signatures could benefit from drugs 

repurposed from unrelated therapeutic areas [48]. 

7. Pandemic Preparedness and Rapid Response: During the 

COVID-19 pandemic, innovative machine learning 

pipelines had been deployed to screen massive drug 

libraries against viral targets in weeks, compared to years 

in traditional pipelines [4]. Platforms integrating 

molecular docking, transcriptomics reversal signatures, 

and AI-driven prioritisation had identified candidates like 

baricitinib, dexamethasone, and tocilizumab [35]. These 

innovative approaches have demonstrated the critical role 

of ML in accelerating emergency therapeutic discovery. 

  Application of Artificial Intelligence in Drug 

Repurposing: 

1. AI-powered Literature and Knowledge Mining: The 

biomedical literature contains a massive amount of 

unstructured text data, including clinical trial outcomes, 

drug safety reports, and mechanistic studies. AI-driven 

natural language processing (NLP) tools had extracted 

drug–disease associations from millions of publications, 

patents, and clinical records [34]. Systems like IBM 

Watson had been applied to mine text-based biomedical 

databases, thereby generating hypotheses for drug 

repurposing at a scale that manual curation could not 

achieve [50]. These AI-driven pipelines had reduced the 

time needed to identify candidate repositioning 

opportunities. 

2. Reinforcement Learning in Repurposing: Reinforcement 

learning (RL), an AI paradigm where agents have been 

trained to make sequential decisions by maximising 

rewards, has been applied to drug repurposing scenarios 

[46]. RL agents had explored chemical space or disease–

drug interaction networks to iteratively identify drug 

candidates that maximised therapeutic relevance while 

minimising adverse effects. Such approaches had been 

particularly valuable in repurposing drug combinations, 

where the synergy between multiple agents had been 

optimised through trial-and-error learning in silico. 

3. AI for Rare and Neglected Diseases: One of the most 

impactful applications of AI in repurposing has been for 

rare and neglected diseases, where traditional drug 
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discovery investments had been limited due to low market 

incentives [3]. AI-based algorithms have enabled the 

identification of cost-effective repositioning candidates by 

matching existing drugs to rare disease pathophysiology 

using genomic and clinical data [58]. For instance, AI 

tools had suggested the repositioning of the cancer drug 

nilotinib for neurodegenerative disorders such as 

Parkinson’s disease based on its ability to modulate 

autophagy pathways [59]. 

4. AI in Pandemic Preparedness and Infectious Diseases: AI 

applications have played a particularly prominent role in 

pandemic preparedness. During the COVID-19 pandemic, 

AI had been used to screen existing antivirals, 

immunomodulators, and anti-inflammatory drugs against 

SARS-CoV-2 targets within weeks [13]. AI-driven 

models such as Benevolent AI’s knowledge graph 

approach had identified baricitinib as a candidate for 

COVID-19, leading to its emergency authorisation [35]. 

Similarly, AI platforms had suggested potential 

repurposing of drugs like lopinavir–ritonavir and 

tocilizumab during the early outbreak phase [8]. 

5. AI-driven Polypharmacology and Side-effect Profiling: 

Polypharmacology, where a drug interacts with multiple 

targets, has often been the basis for successful 

repurposing. AI models had been developed to predict 

secondary pharmacological effects of drugs, thus 

uncovering opportunities for repositioning [60]. Likewise, 

AI had been employed to analyse adverse event databases 

to detect signals of unexpected therapeutic benefits. For 

instance, EHR mining with AI had suggested metformin’s 

protective effects against certain cancers [45]. 

 Advantages of Machine Learning and AI in Drug 

Repurposing: 

The integration of machine learning (ML) and artificial 

intelligence (AI) into drug repurposing pipelines has offered 

several advantages that traditional methodologies have not 

been able to achieve. These advantages have ranged from 

reduced development costs and timelines to enhanced 

prediction accuracy, improved scalability, and better patient 

stratification [5]. 

1. Reduction in Cost and Time: One of the most significant 

advantages has been the drastic reduction in both cost and 

time required for drug discovery. Traditional de novo 

drug development had taken over a decade and had 

required billions of dollars in investment [2]. By contrast, 

ML- and AI-driven repurposing had leveraged existing 

drugs with known safety profiles, which had significantly 

shortened preclinical phases and reduced overall costs [3]. 

For example, during the COVID-19 pandemic, AI-based 

tools had identified baricitinib as a candidate treatment 

within weeks, whereas conventional drug discovery 

would have taken years [35]. 

2. Improved Prediction Accuracy: AI models have 

demonstrated superior accuracy in predicting drug–target 

interactions and disease associations compared to 

conventional statistical methods. Deep learning 

algorithms, graph neural networks, and ensemble models 

had captured complex, nonlinear biological patterns that 

traditional models had missed [38]. This improvement in 

accuracy has increased the likelihood of successful 

repurposing outcomes, reducing attrition rates in clinical 

trials. 

3. Scalability for Big Data Integration: Another advantage 

was scalability. Modern biomedical research has 

generated massive datasets, including genomics, 

proteomics, metabolomics, and real-world clinical data. 

Traditional methods had struggled to integrate such high-

dimensional datasets, whereas ML and AI had handled 

them efficiently [43]. By combining multi-omics and 

clinical records, AI-driven models have enabled holistic 

repurposing predictions across diverse diseases. 

4. Discovery of Hidden Patterns and Relationships: AI 

algorithms have excelled in uncovering hidden 

relationships within data that had not been apparent 

through conventional analysis. For instance, NLP-based 

AI models had mined unstructured biomedical literature 

to detect novel drug–disease links, while graph-based 

models had revealed indirect therapeutic associations in 

biological networks [44]. This ability had broadened the 

spectrum of repositioning opportunities across therapeutic 

areas. 

5. Patient Stratification and Precision Medicine: Another 

key advantage has been the contribution to personalised 

medicine. ML and AI tools had stratified patients based 

on genetic, transcriptomic, or clinical features, thereby 

predicting which subgroups had been most likely to 

benefit from repurposed drugs [48]. This precision-driven 

approach has improved treatment outcomes while 

minimising adverse effects, aligning drug repurposing 

with the goals of precision medicine. 

6. Facilitation of Drug Combination Repurposing: AI had 

also facilitated the identification of effective drug 

combinations, a task that had been computationally 

intensive with traditional methods. Deep reinforcement 

learning and matrix factorisation approaches had 

predicted synergistic drug interactions more accurately, 

accelerating the discovery of novel combination therapies 

for oncology, infectious diseases, and neurodegenerative 

disorders [46]. 
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7. Real-world Validation and Evidence-based Insights: AI-

driven analysis of electronic health records, insurance 

claims, and adverse event reporting systems has provided 

real-world validation of repurposing hypotheses. This had 

been a critical advantage because real-world data had 

often reflected treatment responses across diverse 

populations outside controlled clinical trial settings [45]. 

Such validation had improved the translational potential 

of repurposed andidates. 

Challenges in Machine Learning and AI-driven Drug 

1. Data Availability and Quality: One of the primary 

challenges had been the dependence on large, high-quality 

datasets. Although biomedical research had produced vast 

amounts of data, much of it had been incomplete, 

heterogeneous, or noisy [19]. For example, gene-

expression datasets had often contained batch effects, 

while electronic health records had suffered from missing 

values and inconsistent reporting [51]. Such limitations 

had reduced the reliability of ML predictions. 

2. Data Integration Across Modalities: Another challenge 

had been the integration of multi-modal data sources, 

including genomics, proteomics, metabolomics, and 

clinical outcomes. While AI had been able to process 

diverse datasets, harmonising them across different 

platforms, populations, and formats had remained difficult 

[43]. Lack of standardised ontologies and interoperable 

formats had further complicated the creation of unified 

databases for repurposing studies. 

3. Interpretability of AI Models: AI-driven models, 

particularly deep learning networks, have often been 

criticised as ―black boxes‖ because their decision-making 

processes have not been easily interpretable [52]. In drug 

repurposing, the lack of interpretability has been a major 

concern because regulatory agencies and clinicians have 

required mechanistic explanations before approving or 

adopting repurposed therapies. Without interpretability, 

AI predictions had struggled to gain clinical trust. 

4. Bias and Generalizability AI models had been prone to 

biases if training data had been skewed toward certain 

populations, diseases, or drug classes. For instance, 

models trained primarily on Western population data had 

not always generalised well to Asian or African cohorts 

[53]. Similarly, drug–disease association models had 

sometimes been biased toward well-studied drugs, leaving 

rare diseases underrepresented. These biases had limited 

the equity and universality of repurposing predictions. 

5. Validation Gap Between Prediction and Clinic: A 

significant challenge has been the gap between 

computational predictions and clinical validation. While 

ML pipelines had identified thousands of potential 

repurposing candidates, only a fraction had advanced to 

clinical trials, and even fewer had achieved regulatory 

approval [3]. This gap had been due to the high cost and 

time required for experimental and clinical validation, 

which had remained a bottleneck. 

6. Improved Data Infrastructure: Future progress had 

depended on the development of standardised, 

interoperable, and high-quality biomedical databases. 

Initiatives to harmonise omics data, clinical trial results, 

and real-world evidence had been crucial for ensuring 

reliable repurposing predictions [43]. 

7. Explainable AI Models: Advances in explainable AI 

(XAI) had been expected to improve the interpretability 

of predictions, making computational insights more 

acceptable to clinicians and regulatory agencies [52]. By 

providing mechanistic reasoning alongside predictions, 

XAI had been projected to build trust in AI-driven 

pipelines. 

8. Integration with Digital Health and Wearables: The 

incorporation of real-time patient data from wearable 

devices and digital health platforms has been seen as a 

powerful addition to drug repurposing. AI models had 

been anticipated to use continuous patient monitoring data 

to refine and personalise repurposing predictions [49] 

9. Advances in Synthetic Biology and Systems 

Pharmacology: ML had been projected to integrate more 

deeply with synthetic biology and systems pharmacology, 

enabling in silico modelling of drug–disease–host 

interactions and predicting repurposing outcomes at a 

systems level [36]. 

10. Global Collaborations and Open Science: Large-scale, 

global collaborations have been essential for sharing data, 

computational resources, and expertise. Open-access 

repurposing platforms had been predicted to democratize 

drug discovery and ensure that repurposing strategies 

benefited not only profitable indications but also rare and 

neglected diseases [3]. 

11. Regulatory Adaptations: Regulatory bodies had been 

expected to evolve frameworks to accommodate AI-

driven drug repurposing by setting guidelines for 

validation, reproducibility, and transparency [54]. Policies 

encouraging repurposing investment despite weak 

intellectual property protection had also been anticipated. 

12. Integration of Quantum Computing: In the longer term, 

the rise of quantum computing has been foreseen to 

accelerate AI-driven molecular simulations and drug–

target interaction predictions, thereby further advancing 

repurposing pipelines. 
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13. Future Scope: 

14. Improved Data Infrastructure: Future progress had 

depended on the development of standardised, 

interoperable, and high-quality biomedical databases. 

Initiatives to harmonise omics data, clinical trial results, 

and real-world evidence had been crucial for ensuring 

reliable repurposing predictions [43]. 

15. Explainable AI Models: Advances in explainable AI 

(XAI) had been expected to improve the interpretability 

of predictions, making computational insights more 

acceptable to clinicians and regulatory agencies [52]. By 

providing mechanistic reasoning alongside predictions, 

XAI had been projected to build trust in AI-driven 

pipelines. 

16. Integration with Digital Health and Wearables: The 

incorporation of real-time patient data from wearable 

devices and digital health platforms has been seen as a 

powerful addition to drug repurposing. AI models had 

been anticipated to use continuous patient monitoring data 

to refine and personalise repurposing predictions [49] 

17. .4. Advances in Synthetic Biology and Systems 

Pharmacology: ML had been projected to integrate more 

deeply with synthetic biology and systems pharmacology, 

enabling in silico modelling of drug–disease–host 

interactions and predicting repurposing outcomes at a 

systems level [36]. 

18. Global Collaborations and Open Science: Large-scale, 

global collaborations have been essential for sharing data, 

computational resources, and expertise. Open-access 

repurposing platforms had been predicted to democratize 

drug discovery and ensure that repurposing strategies 

benefited not only profitable indications but also rare and 

neglected diseases [3]. 

19. Regulatory Adaptations: Regulatory bodies had been 

expected to evolve frameworks to accommodate AI-

driven drug repurposing by setting guidelines for 

validation, reproducibility, and transparency [54]. Policies 

encouraging repurposing investment despite weak 

intellectual property protection had also been anticipated. 

20. Integration of Quantum Computing: In the longer term, 

the rise of quantum computing has been foreseen to 

accelerate AI-driven molecular simulations and drug–

target interaction predictions, thereby further advancing 

repurposing pipelines. 

CONCLUSION 

1. Machine learning and artificial intelligence have already 

transformed drug repurposing into a faster, more cost-

effective, and more precise approach compared to 

traditional methods. The future had promised even greater 

integration of computational models with experimental 

and clinical pipelines, ultimately delivering more 

accessible, effective, and personalised therapies for 

patients worldwide. By overcoming existing challenges 

and fostering collaborative innovation, ML and AI have 

been positioned to become indispensable pillars of 21st-

century pharmaceutical research 
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