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ABSTRACT

Drug discovery has long been a cornerstone of medical progress, yet the conventional path of developing new therapeutics is
notoriously lengthy, costly, and fraught with uncertainty. On average, it requires more than a decade of intensive research,
billions of dollars in investment, and multiple phases of preclinical and clinical testing to bring a single novel drug to market.
Despite such efforts, the attrition rate remains strikingly high, with only a small fraction of candidates achieving regulatory
approval. In this context, drug repurposing, also known as drug repositioning, has emerged as a pragmatic and highly valuable
strategy to address unmet medical needs and optimise available therapeutic resources. The history of drug repurposing is deeply
embedded in the evolution of modern pharmacology. Early examples demonstrate how serendipitous observations, clinical
experiences, and detailed pharmacological studies gave new life to compounds originally designed for unrelated purposes.
Aspirin, first introduced as an analgesic and antipyretic, was later recognised for its antiplatelet effects, transforming it into a
cornerstone therapy for cardiovascular diseases. Thalidomide, infamous for its teratogenic effects, was subsequently repurposed
as an immunomodulatory drug to treat multiple myeloma and leprosy-related complications. Sildenafil, initially developed for
angina, gained global recognition when repurposed for erectile dysfunction and later for pulmonary arterial hypertension.
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INTRODUCTION approval. In this context, drug repurposing, also known as
drug repositioning, has emerged as a pragmatic and highly
valuable strategy to address unmet medical needs and
optimise available therapeutic resources. The history of drug
repurposing is deeply embedded in the evolution of modern
pharmacology. Early examples demonstrate  how
serendipitous observations, clinical experiences, and detailed
pharmacological studies gave new life to compounds
originally designed for unrelated purposes. Aspirin, first
introduced as an analgesic and antipyretic, was later
recognised for its antiplatelet effects, transforming it into a

rug discovery has long been a cornerstone of
medical progress, yet the conventional path of
developing new therapeutics is notoriously
lengthy, costly, and fraught with uncertainty. On average, it
requires more than a decade of intensive research, billions of
dollars in investment, and multiple phases of preclinical and
clinical testing to bring a single novel drug to market.
Despite such efforts, the attrition rate remains strikingly high,
with only a small fraction of candidates achieving regulatory
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cornerstone therapy for cardiovascular diseases. Thalidomide,
infamous for its teratogenic effects, was subsequently
repurposed as an immunomodulatory drug to treat multiple
myeloma and leprosy-related complications. Sildenafil,
initially developed for angina, gained global recognition
when repurposed for erectile dysfunction and later for
pulmonary arterial hypertension. These milestones illustrate
the enduring value of repurposing as both a scientific
opportunity and a clinical necessity. What makes drug
repurposing particularly attractive is its ability to bypass
several hurdles associated with traditional drug discovery.
Since the pharmacokinetics, safety profiles, and toxicological
data of existing drugs are already well-characterised, the time
and cost required to advance them into new therapeutic
domains are substantially reduced. Moreover, repurposing
minimises the risks of unforeseen adverse effects, thereby
offering greater confidence in clinical outcomes. This
characteristic not only accelerates patient access to therapies
but also provides a sustainable approach for tackling rare,
neglected, and emergent diseases where new drug
development may not be economically feasible. An equally
important aspect lies in the versatility of repurposed drugs.
Many approved compounds demonstrate
polypharmacology—the ability to interact with multiple
molecular targets. This feature allows them to be repositioned
across diverse therapeutic areas, ranging from oncology and
infectious diseases to neurological and autoimmune
disorders. Furthermore, the repurposing paradigm aligns well
with the principles of precision medicine, as drugs can be
matched with specific patient populations based on their
molecular or physiological characteristics. The ideal
characteristics of a drug suitable for repurposing extend
beyond established safety and pharmacokinetics. A strong
candidate typically possesses well-documented mechanisms
of action, broad-spectrum biological activity, and a
favourable therapeutic index. Additionally, compounds with
structural diversity or known interactions with multiple
signalling pathways tend to have higher repurposing
potential. Drugs with extensive post-marketing surveillance
data also offer valuable insights into long-term tolerability,
further strengthening their candidacy for repositioning. The
relevance of drug repurposing has been repeatedly validated
during times of medical urgency. The global health crisis
brought on by the COVID-19 pandemic highlighted its value
once again, as researchers rapidly turned to existing
pharmacological libraries to identify possible antiviral and
supportive treatments. This unprecedented situation
underscored the adaptability and resilience of the repurposing
framework in addressing urgent therapeutic gaps under
pressing timeline.

Importance of Machine Learning in Drug Repurposing

Drug discovery has been a complex, costly, and time-
intensive process that requires an average of 10-15 years and
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billions of dollars before a new molecule reaches the market
[1]. Traditional approaches had focused on de novo drug
design, but the high attrition rates during preclinical and
clinical phases had hindered success [2]. In this context, drug
repurposing has emerged as a strategic alternative that
leverages the existing safety profiles of approved drugs for
novel therapeutic uses, thereby reducing costs and
development timelines [3]. Machine learning (ML) tools have
gained significance in drug repurposing because they have
allowed the rapid integration and analysis of high-
dimensional  biomedical data, including genomics,
proteomics, transcriptomics, and clinical records [4]. These
computational methods had enhanced the prediction of drug—
target interactions, disease—gene associations, and phenotype
similarities, which had been crucial for identifying new
therapeutic indications of old drugs [5]. The importance of
ML-based drug repurposing had been highlighted during
global health emergencies, such as the COVID-19 pandemic,
where computational pipelines had accelerated the
identification of repurposed candidates like remdesivir,
hydroxychloroquine, and baricitinib [6]. Beyond pandemics,
ML has been applied to chronic and rare diseases, providing
hope for patients where traditional R&D pipelines have not
delivered [7]. Thus, the incorporation of ML in drug
repurposing had not only promised cost-efficiency but had
also advanced precision medicine strategies by aligning
therapies with patient-specific molecular signatures [8].

Conventional Methods of Machine Learning in Drug
Repurposing

Early ML applications in drug repurposing had relied on
supervised, unsupervised, and semi-supervised learning
approaches that had processed structured biomedical data [9].
Supervised learning methods such as support vector machines
(SVM), random forests (RF), and logistic regression have
been used to classify drug—disease relationships based on
labelled training datasets [10]. These models had predicted
whether a drug could be repurposed for a specific disease by
learning from known positive and negative associations [11].
Unsupervised learning approaches, such as clustering and
dimensionality reduction, had been employed when labelled
data had been limited. Clustering algorithms like k-means
and hierarchical clustering had grouped drugs based on
similarity in chemical structures, transcriptomic responses, or
adverse effect profiles, thereby uncovering potential shared
therapeutic targets [12]. Principal component analysis (PCA)
and t-distributed stochastic neighbour embedding (t-SNE)
had facilitated visualisation of drug—disease interaction
networks in reduced dimensions [13]. Semi-supervised
learning had been advantageous because it had combined
small labelled datasets with large unlabelled biomedical
repositories. For instance, graph-based semi-supervised
models had integrated heterogeneous data sources such as
drug-target  interactions,  protein—protein interaction
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networks, and disease ontologies to infer novel drug—disease
links [14]. Another conventional ML strategy had involved
similarity-based prediction, where chemical structure
similarity, side-effect similarity, and gene-expression
similarity had been used to match drugs to new indications.
For example, Campillo et al. (2008) [15] had demonstrated
that drugs with overlapping side-effect profiles often shared
molecular targets, which had provided a basis for
repositioning. Connectivity Map (CMap) analyses had
matched disease gene-expression signatures with drug-
induced transcriptional responses to identify therapeutic
reversals [16]. Furthermore, ensemble learning techniques
have been widely employed in conventional repurposing
studies. Random forests and gradient boosting methods had
aggregated predictions from multiple weak learners to
improve accuracy in identifying candidate drugs [17]. These
approaches had proven beneficial in high-throughput
screening datasets, where noise and variability had posed
challenges to single-model predictions. Despite their promise,
conventional ML methods had faced limitations. They had
depended heavily on feature engineering, requiring domain
expertise to select relevant molecular descriptors, pathway
features, or pharmacological parameters [18]. Moreover,
these methods had struggled with scalability when applied to
modern big data sources such as single-cell transcriptomics
or electronic health records [19].

Drug repurposing had not been a novel concept; several drugs
had already been repositioned successfully for new
indications even before machine learning tools had been
widely adopted [20]. These cases have illustrated the
feasibility and practicality of repositioning strategies in
pharmaceutical research.

Examples of Drugs Which Had Been Reused Before for
Other Diseases:

1. Sildenafil (Viagra®: Sildenafil had originally been
developed by Pfizer as an anti-hypertensive and anti-
anginal agent, targeting phosphodiesterase type 5 (PDE5)
[21]. During clinical trials, it had failed to show sufficient
efficacy in angina but had demonstrated a remarkable
effect in treating erectile dysfunction [22]. This
serendipitous observation had led to its repositioning and
eventual blockbuster success. Later, sildenafil had also
been approved for pulmonary arterial hypertension,
further proving its repurposing potential [23].

2. Thalidomide: Thalidomide had been withdrawn in the
1960s due to teratogenic effects when it had been
prescribed for morning sickness in pregnant women [24].
However, decades later, researchers had discovered its
immunomodulatory and anti-angiogenic properties [25].
This had paved the way for its repurposing in the
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treatment of multiple myeloma and leprosy-associated
erythema nodosum leprosum.

3. Minoxidil: Minoxidil had initially been developed as an
oral antihypertensive agent due to its vasodilatory effect
[26]. During clinical use, patients had been observed to
experience hypertrichosis (excessive hair growth) as a
side effect. This had ultimately led to its topical
reformulation and approval for androgenic alopecia
treatment [27].

4. Zidovudine (AZT): Zidovudine had first been synthesised
in 1964 as a potential anti-cancer drug but had failed in
oncology [28]. In the 1980s, it had been repurposed as the
first approved antiretroviral drug for HIV/AIDS after it
had shown potent inhibition of reverse transcriptase [29].

5. Methotrexate: Methotrexate was originally designed as a
chemotherapeutic agent targeting rapidly dividing cancer
cells [30]. Later, its immunosuppressive properties had
been recognised, and it had been repurposed for the
treatment of autoimmune conditions such as rheumatoid
arthritis and psoriasis [31].

6. Aspirin: Aspirin (acetylsalicylic acid) was first developed
as an analgesic and anti-inflammatory drug [32]. Over
time, it had been repurposed for cardiovascular disease
prevention due to its antiplatelet activity, which had
reduced the risk of myocardial infarction and stroke [33].

7. Remdesivir: Originally developed for Ebola virus disease,
remdesivir was later repurposed as one of the first
antiviral drugs authorised for emergency use against
COVID-19 [34]. Although its efficacy had been debated,
its rapid repositioning had underscored the importance of
computational drug repurposing during pandemics.

8. Baricitinib: Baricitinib, a Janus kinase (JAK) inhibitor
used for rheumatoid arthritis, had been identified through
Al-driven repurposing pipelines as a potential treatment
for COVID-19 due to its dual antiviral and anti-
inflammatory properties [35]. The drug had subsequently
received emergency approval.

Innovative Applications of Machine Learning in Drug

1. Network-based Approaches: One of the most innovative
applications of ML in drug repurposing has been the
development of network-based methods. Biological
systems had been represented as interconnected networks
of proteins, genes, metabolites, and diseases [36].
Machine learning algorithms had been applied to analyse
these complex networks to identify potential repurposing
opportunities. For instance, drug-disease bipartite
networks, drug-target interaction networks, and disease—
gene association graphs had been constructed to identify
hidden therapeutic links [37]. Graph neural networks
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(GNNSs) have further advanced this area by learning node
embeddings that capture topological and biological
similarity across networks [38].

. Deep Learning Applications: Deep learning has
represented a paradigm shift in repurposing strategies.
Convolutional neural networks (CNNs) had been used to
predict drug—target binding by learning from structural
and chemical features [39]. Recurrent neural networks
(RNNs) have been employed to model sequential
biological data such as protein amino acid sequences or
drug SMILES strings [40]. Autoencoders had been
applied to reduce dimensionality and extract meaningful
latent representations from large-scale omics datasets,
enabling the discovery of repurposable drug candidates
[41]. Generative adversarial networks (GANSs) had also
been utilised to simulate novel drug—disease associations
by generating synthetic but biologically plausible data
points that had complemented limited real-world datasets
[42]. These methods had enhanced the ability to
generalise predictions across diverse therapeutic areas.

. Multi-Omics Integration: An innovative frontier in ML-
driven repurposing has been the integration of multi-
omics data. Transcriptomic, proteomic, metabolomic, and
epigenomic datasets had been combined to provide
holistic views of disease mechanisms and drug responses
[43]. ML algorithms such as multi-kernel learning and
ensemble frameworks have been applied to harmonise
diverse data modalities. For example, integrating
transcriptomic profiles with drug-induced perturbation
signatures has enabled the identification of repurposing
candidates for neurodegenerative diseases [11].

. Real-World Evidence (RWE) Mining: Electronic health
records (EHRS), insurance claims, and patient registries
have offered real-world evidence that has been mined
using machine learning for repurposing purposes. Natural
language processing (NLP) algorithms had extracted
drug-disease relationships from unstructured clinical
notes [44]. For instance, retrospective EHR analysis had
suggested the antidiabetic drug metformin as a potential
anti-cancer candidate by identifying lower cancer
incidence among diabetic patients treated with metformin
[45]. ML-enhanced RWE analysis had therefore
uncovered repositioning opportunities that had been less
apparent in controlled experimental datasets.

. Drug Combination Repurposing: Innovative ML
applications have also explored drug combinations, where
two or more existing drugs have been identified to act
synergistically for new indications. Machine learning
methods such as matrix factorisation and deep
reinforcement learning have been used to predict
synergistic effects of drug pairs [46]. This had been
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particularly relevant in oncology and infectious diseases,
where combination therapy had been standard practice.

. Patient-Specific Repurposing: Personalised or precision

medicine approaches have also benefited from innovative
ML applications. Algorithms had stratified patients based
on genetic or phenotypic profiles to identify subgroups
that had been more likely to respond to a repurposed drug
[47]. For example, ML-driven transcriptomic analysis had
suggested that certain cancer patients with specific gene-
expression signatures could benefit from drugs
repurposed from unrelated therapeutic areas [48].

Pandemic Preparedness and Rapid Response: During the
COVID-19 pandemic, innovative machine learning
pipelines had been deployed to screen massive drug
libraries against viral targets in weeks, compared to years
in traditional pipelines [4]. Platforms integrating
molecular docking, transcriptomics reversal signatures,
and Al-driven prioritisation had identified candidates like
baricitinib, dexamethasone, and tocilizumab [35]. These
innovative approaches have demonstrated the critical role
of ML in accelerating emergency therapeutic discovery.

Application of Artificial Intelligence in Drug

Repurposing:
1. Al-powered Literature and Knowledge Mining: The

biomedical literature contains a massive amount of
unstructured text data, including clinical trial outcomes,
drug safety reports, and mechanistic studies. Al-driven
natural language processing (NLP) tools had extracted
drug—disease associations from millions of publications,
patents, and clinical records [34]. Systems like 1BM
Watson had been applied to mine text-based biomedical
databases, thereby generating hypotheses for drug
repurposing at a scale that manual curation could not
achieve [50]. These Al-driven pipelines had reduced the
time needed to identify candidate repositioning
opportunities.

. Reinforcement Learning in Repurposing: Reinforcement

learning (RL), an Al paradigm where agents have been
trained to make sequential decisions by maximising
rewards, has been applied to drug repurposing scenarios
[46]. RL agents had explored chemical space or disease—
drug interaction networks to iteratively identify drug
candidates that maximised therapeutic relevance while
minimising adverse effects. Such approaches had been
particularly valuable in repurposing drug combinations,
where the synergy between multiple agents had been
optimised through trial-and-error learning in silico.

. Al for Rare and Neglected Diseases: One of the most

impactful applications of Al in repurposing has been for
rare and neglected diseases, where traditional drug
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discovery investments had been limited due to low market
incentives [3]. Al-based algorithms have enabled the
identification of cost-effective repositioning candidates by
matching existing drugs to rare disease pathophysiology
using genomic and clinical data [58]. For instance, Al
tools had suggested the repositioning of the cancer drug
nilotinib for neurodegenerative disorders such as
Parkinson’s disease based on its ability to modulate
autophagy pathways [59].

4. Al in Pandemic Preparedness and Infectious Diseases: Al
applications have played a particularly prominent role in
pandemic preparedness. During the COVID-19 pandemic,
Al had been used to screen existing antivirals,
immunomodulators, and anti-inflammatory drugs against
SARS-CoV-2 targets within weeks [13]. Al-driven
models such as Benevolent AI’s knowledge graph
approach had identified baricitinib as a candidate for
COVID-19, leading to its emergency authorisation [35].
Similarly, Al platforms had suggested potential
repurposing of drugs like lopinavir—ritonavir and
tocilizumab during the early outbreak phase [8].

5. Al-driven Polypharmacology and Side-effect Profiling:
Polypharmacology, where a drug interacts with multiple
targets, has often been the basis for successful
repurposing. Al models had been developed to predict
secondary pharmacological effects of drugs, thus
uncovering opportunities for repositioning [60]. Likewise,
Al had been employed to analyse adverse event databases
to detect signals of unexpected therapeutic benefits. For
instance, EHR mining with Al had suggested metformin’s
protective effects against certain cancers [45].

Advantages of Machine Learning and Al in Drug
Repurposing:

The integration of machine learning (ML) and artificial
intelligence (Al) into drug repurposing pipelines has offered
several advantages that traditional methodologies have not
been able to achieve. These advantages have ranged from
reduced development costs and timelines to enhanced
prediction accuracy, improved scalability, and better patient
stratification [5].

1. Reduction in Cost and Time: One of the most significant
advantages has been the drastic reduction in both cost and
time required for drug discovery. Traditional de novo
drug development had taken over a decade and had
required billions of dollars in investment [2]. By contrast,
ML- and Al-driven repurposing had leveraged existing
drugs with known safety profiles, which had significantly
shortened preclinical phases and reduced overall costs [3].
For example, during the COVID-19 pandemic, Al-based
tools had identified baricitinib as a candidate treatment
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within weeks, whereas conventional drug discovery
would have taken years [35].

. Improved Prediction Accuracy: Al models have

demonstrated superior accuracy in predicting drug—target
interactions and disease associations compared to
conventional  statistical methods. Deep learning
algorithms, graph neural networks, and ensemble models
had captured complex, nonlinear biological patterns that
traditional models had missed [38]. This improvement in
accuracy has increased the likelihood of successful
repurposing outcomes, reducing attrition rates in clinical
trials.

. Scalability for Big Data Integration: Another advantage

was scalability. Modern biomedical research has
generated massive datasets, including genomics,
proteomics, metabolomics, and real-world clinical data.
Traditional methods had struggled to integrate such high-
dimensional datasets, whereas ML and Al had handled
them efficiently [43]. By combining multi-omics and
clinical records, Al-driven models have enabled holistic
repurposing predictions across diverse diseases.

. Discovery of Hidden Patterns and Relationships: Al

algorithms  have excelled in uncovering hidden
relationships within data that had not been apparent
through conventional analysis. For instance, NLP-based
Al models had mined unstructured biomedical literature
to detect novel drug-disease links, while graph-based
models had revealed indirect therapeutic associations in
biological networks [44]. This ability had broadened the
spectrum of repositioning opportunities across therapeutic
areas.

. Patient Stratification and Precision Medicine: Another

key advantage has been the contribution to personalised
medicine. ML and Al tools had stratified patients based
on genetic, transcriptomic, or clinical features, thereby
predicting which subgroups had been most likely to
benefit from repurposed drugs [48]. This precision-driven
approach has improved treatment outcomes while
minimising adverse effects, aligning drug repurposing
with the goals of precision medicine.

. Facilitation of Drug Combination Repurposing: Al had

also facilitated the identification of effective drug
combinations, a task that had been computationally
intensive with traditional methods. Deep reinforcement
learning and matrix factorisation approaches had
predicted synergistic drug interactions more accurately,
accelerating the discovery of novel combination therapies
for oncology, infectious diseases, and neurodegenerative
disorders [46].
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7.

Real-world Validation and Evidence-based Insights: Al-
driven analysis of electronic health records, insurance
claims, and adverse event reporting systems has provided
real-world validation of repurposing hypotheses. This had
been a critical advantage because real-world data had
often reflected treatment responses across diverse
populations outside controlled clinical trial settings [45].
Such validation had improved the translational potential
of repurposed andidates.

Challenges in Machine Learning and Al-driven Drug

Data Availability and Quality: One of the primary
challenges had been the dependence on large, high-quality
datasets. Although biomedical research had produced vast
amounts of data, much of it had been incomplete,
heterogeneous, or noisy [19]. For example, gene-
expression datasets had often contained batch effects,
while electronic health records had suffered from missing
values and inconsistent reporting [51]. Such limitations
had reduced the reliability of ML predictions.

Data Integration Across Modalities: Another challenge
had been the integration of multi-modal data sources,
including genomics, proteomics, metabolomics, and
clinical outcomes. While Al had been able to process
diverse datasets, harmonising them across different
platforms, populations, and formats had remained difficult
[43]. Lack of standardised ontologies and interoperable
formats had further complicated the creation of unified
databases for repurposing studies.

Interpretability of Al Models: Al-driven models,
particularly deep learning networks, have often been
criticised as “black boxes” because their decision-making
processes have not been easily interpretable [52]. In drug
repurposing, the lack of interpretability has been a major
concern because regulatory agencies and clinicians have
required mechanistic explanations before approving or
adopting repurposed therapies. Without interpretability,
Al predictions had struggled to gain clinical trust.

Bias and Generalizability Al models had been prone to
biases if training data had been skewed toward certain
populations, diseases, or drug classes. For instance,
models trained primarily on Western population data had
not always generalised well to Asian or African cohorts
[53]. Similarly, drug-disease association models had
sometimes been biased toward well-studied drugs, leaving
rare diseases underrepresented. These biases had limited
the equity and universality of repurposing predictions.

Validation Gap Between Prediction and Clinic: A
significant challenge has been the gap between
computational predictions and clinical validation. While
ML pipelines had identified thousands of potential
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11.

12.
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repurposing candidates, only a fraction had advanced to
clinical trials, and even fewer had achieved regulatory
approval [3]. This gap had been due to the high cost and
time required for experimental and clinical validation,
which had remained a bottleneck.

Improved Data Infrastructure: Future progress had
depended on the development of standardised,
interoperable, and high-quality biomedical databases.
Initiatives to harmonise omics data, clinical trial results,
and real-world evidence had been crucial for ensuring
reliable repurposing predictions [43].

Explainable Al Models: Advances in explainable Al
(XAI) had been expected to improve the interpretability
of predictions, making computational insights more
acceptable to clinicians and regulatory agencies [52]. By
providing mechanistic reasoning alongside predictions,
XAl had been projected to build trust in Al-driven
pipelines.

Integration with Digital Health and Wearables: The
incorporation of real-time patient data from wearable
devices and digital health platforms has been seen as a
powerful addition to drug repurposing. Al models had
been anticipated to use continuous patient monitoring data
to refine and personalise repurposing predictions [49]

Synthetic  Biology and Systems
Pharmacology: ML had been projected to integrate more
deeply with synthetic biology and systems pharmacology,
enabling in silico modelling of drug—disease—host
interactions and predicting repurposing outcomes at a
systems level [36].

Global Collaborations and Open Science: Large-scale,
global collaborations have been essential for sharing data,
computational resources, and expertise. Open-access
repurposing platforms had been predicted to democratize
drug discovery and ensure that repurposing strategies
benefited not only profitable indications but also rare and
neglected diseases [3].

Regulatory Adaptations: Regulatory bodies had been
expected to evolve frameworks to accommodate Al-
driven drug repurposing by setting guidelines for
validation, reproducibility, and transparency [54]. Policies
encouraging repurposing investment despite weak
intellectual property protection had also been anticipated.

Integration of Quantum Computing: In the longer term,
the rise of quantum computing has been foreseen to
accelerate Al-driven molecular simulations and drug-
target interaction predictions, thereby further advancing
repurposing pipelines.
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13.
14.Improved Data

15.

16.

17.

18.

19.

20.

Future Scope:

Infrastructure: Future progress had
depended on the development of standardised,
interoperable, and high-quality biomedical databases.
Initiatives to harmonise omics data, clinical trial results,
and real-world evidence had been crucial for ensuring
reliable repurposing predictions [43].

Explainable Al Models: Advances in explainable Al
(XAIl) had been expected to improve the interpretability
of predictions, making computational insights more
acceptable to clinicians and regulatory agencies [52]. By
providing mechanistic reasoning alongside predictions,
XAl had been projected to build trust in Al-driven
pipelines.

Integration with Digital Health and Wearables: The
incorporation of real-time patient data from wearable
devices and digital health platforms has been seen as a
powerful addition to drug repurposing. Al models had
been anticipated to use continuous patient monitoring data
to refine and personalise repurposing predictions [49]

4. Advances in Synthetic Biology and Systems
Pharmacology: ML had been projected to integrate more
deeply with synthetic biology and systems pharmacology,
enabling in silico modelling of drug—disease—host
interactions and predicting repurposing outcomes at a
systems level [36].

Global Collaborations and Open Science: Large-scale,
global collaborations have been essential for sharing data,
computational resources, and expertise. Open-access
repurposing platforms had been predicted to democratize
drug discovery and ensure that repurposing strategies
benefited not only profitable indications but also rare and
neglected diseases [3].

Regulatory Adaptations: Regulatory bodies had been
expected to evolve frameworks to accommodate Al-
driven drug repurposing by setting guidelines for
validation, reproducibility, and transparency [54]. Policies
encouraging repurposing investment despite weak
intellectual property protection had also been anticipated.

Integration of Quantum Computing: In the longer term,
the rise of quantum computing has been foreseen to
accelerate Al-driven molecular simulations and drug-
target interaction predictions, thereby further advancing
repurposing pipelines.

CONCLUSION

1.

Machine learning and artificial intelligence have already
transformed drug repurposing into a faster, more cost-
effective, and more precise approach compared to
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traditional methods. The future had promised even greater
integration of computational models with experimental
and clinical pipelines, ultimately delivering more
accessible, effective, and personalised therapies for
patients worldwide. By overcoming existing challenges
and fostering collaborative innovation, ML and Al have
been positioned to become indispensable pillars of 21st-
century pharmaceutical research
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