A Novel Research on Anti- Diabetic Syrup Using Plants Seeds Abelmoschus Esculents and Punica Granatum

Chitransh Saxena*, Manmohan Sharma, Hariom Sharma, Anil Sharma, Girish Vyas
School of Pharmaceutical Studies, Faculty of Health Sciences, Dr. K. N. Modi University, Newai, 304021, Rajasthan, India

ABSTRACT

Abelmoschus Esculents plant is a vegetable and its general name is lady finger is most of the famous vegetable in India and other countries because of all the medical advantages it has. And Punica Granatum is also known as pomegranate this name is commonly used in India. This is a fruit also large scale of production in country. They both have (lady finger and Pomegranate) an excellent source of Nutrition and control the human blood sugar level. The focus of this review is on Abelmoschus esculentus (okra) and pomegranates as anti-oxidants, agents for reducing tiredness, and most importantly, diabetes therapeutics. Pomegranate and lady finger (also known as okra) fibres and minerals have also long been recognised as sources of energy and biotherapeutics from which essential medications can be manufactured. The analysis examines how well okra and pomegranates can transform the majority of medications used to treat various disorders. Additionally, it expresses hope that pomegranate and okra would succeed in the various stages of clinical testing.

Key words- Abelmoschus Esculents, Punica Granatum, Anti- Diabetic, Therapeutic, Sugar level, Insulin

ARTICLE INFO: Received 2 Jan 2023; Review Complete 18 March 2023; Accepted 13 April 2023; Available online 15 April 2023

DOI: http://dx.doi.org/10.22270/ajprd.v11i2.1258

*Address for Correspondence:
Chitransh Saxena, School of Pharmaceutical Studies, Faculty of Health Sciences, Dr. K. N. Modi University, Newai, 304021, Rajasthan, India

INTRODUCTION

Diabetes mellitus (DM) is one of the very recurrent metabolic diseases in every countries that the results from imperfection in autogenous insulin excretion and through gives to the disablement of sugar distribution (high blood glucose)1. Persistent high blood sugar activates serious diabetic difficulty such as drys reason of insulin-restorative synthesis and enlarge sugar production2. Pomegranate (Punica granatum L.) is fruit materialize to be native to specific parts of different countries (Iran, Malesia, and India), America (USA, Peru), Africa (Equatorial region), and Europe (Turkey). The fruits are gobbled mostly firm and in the form of extract productions like juice, paste, jam3. Fresh pomegranate extract has a high polyphenolic compound such as punicalagin (the most abundant component), anthocyanin, phenolic acids, non-phenolic acids, tannins, and glutenin’s4.

Antidiabetic consequence of pomegranate are most of because of its polyphenolic compounds and their possible capability to act as most productive agents in restrict the risk component for diabetes. Studies have look into the activity of pomegranate extracts in prohibiting heaviness and high levels of fat particle in blood5. However, the underlying low blood sugar mechanism of the polyphenolic compound of pomegranate has not been fully elucidated yet. The current study look into the molecular and biochemical consequence of pomegranate fruits aqueous extract on yeast cell.

Introduction of plants

Abelmoschus Esculents (Okra)- Okra, often called ladies’ fingers or ochor, is a flowering plant in the malvacea family. Its scientific name is Abelmoschus esculentus. Its tasty seed pods have a greenish yellow colour. Okra's geographical origin is under dispute, with proponents claiming Ethiopian, South Asian, Southeast Asian, and West African ancestry. Okra is utilised in many cuisines across the world because it grows well in tropical, subtropical, and temperate climates.2

Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Malvales
Family: Malvaceae
Genus: Abelmoschus
Species: A. esculentus

Origin and distribution

Unknown allopolyploid okra is. The putative parents have been suggested to be Abelmoschus ficulneus, A. tuberculatus, and a "diploid" variety of okra. There is uncertainty regarding the existence of wild populations as opposed to naturalised populations, and the West African variety has been called a cultigen.

Supporters of Southeast Asian, South Asian, Ethiopian, and West African origins for okra disagree on its geographic origin. The Arabic name for the plant, bamiya, was used by the Egyptians and Moors in the 12th and 13th centuries to suggest that it had arrived in Egypt from Arabia, but it was probably brought there from Ethiopia earlier. Instead of coming from India or north through the Sahara, the plant may have entered southwest Asia via the Bab-el-Mandeb strait or the Red Sea. One of the earliest European accounts comes from a Spanish Moor who went to Egypt in 1216 and told how the locals were growing the plant and eating the young, tender pods with food. From Arabia, the plant spread eastward along the shores of the Mediterranean Sea. By 1658, ships trading in slaves across the Atlantic brought the plant to the Americas. In 1686, it was further documented in Suriname. In the early 1800s, okra may have been brought from Africa to the southeast of North America. It was being grown as far north as Philadelphia by 1748, according to Thomas Jefferson. By 1781, it was well established in Virginia. By 1800, it was commonplace all over the Southern United States, and different cultivars were first mentioned in 1806.

Anti-diabetic activity in okra

When administered orally, okra whole fruit supplementation appears to have a promising anti-hyperglycaemic effect in patients with type 2 diabetes. Okra adjuvant therapy in conjunction with other medications may be beneficial to diabetic patients.

Etymology

The word "abelmoschus" comes from the New Latin "ab l-misk," which means "father of musk," while "esculentus" means "fit for human consumption" in Latin. okro or ochro) showed up in 1679 in the Province of Virginia, getting from the Igbo word ọ́kụ̀rụ̀. The word gumbo was first utilized in American vernacular around 1805, getting from Louisiana Creole, yet begins from either the Umbundu word ochinggômbo or the Kimbundu word ki-ngombo. Regardless of the way that in most of the US the word gumbo frequently alludes to the dish, gumbo, many spots in the Profound South might have utilized it to allude to the units and plant as well as numerous different variations of the word tracked down across the African diaspora in the Americas.

Figure 1: Okra

Figure 2: Activities for okra in diabetes
Punica Granatum (Pomegranate)

The pomegranate (Punica granatum) is a deciduous shrub that bears fruit and belongs to the subfamily Punicoideae of the Lythraceae family. Its height ranges from 5 to 10 m (16 to 33 ft).

Scientific Classification

Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Rosids
Clade: Eudicots
Clade: Tracheophytes
Species: P. granatum

The name pomegranate comes from the medieval Latin words pomum, which means "apple," and grntum, which means "seeded." The term "apple of Grenada" was used to describe the pomegranate in early English, but it is now only used in heraldic blazons. This is a common etymology that makes the Latin word "granatus" sound like the Arabic name for the Spanish city of Granada.

Garnet comes from the metathesis of the Old French word "grenat" and the Medieval Latin word "granatum," which means "of a deep red color." This name could have come from pomum granatum, which means "red dye, cochineal," or from granum, which means "pomegranate pulp." The modern French word for pomegranate is "grenade," and the military grenade is named after it.

The edible fraction of a raw pomegranate (table) is made up of 78% water, 19% carbs, 2% protein, and 1% fat. A 100 g (3.5 oz) portion of pomegranate sarcotesta contains 12% of the Daily Value (DV) for vitamin C, 16% of the DV for vitamin K, and 10% of the DV for folate (table). The whole daily value (DV), or 20%, of dietary fibre, is present in the pomegranate's edible seeds.

Anti-diabetic activity in pomegranate-

Pomegranate’s phenolic compounds, which have the potential to limit diabetes risk factors in a highly effective manner, are particularly responsible for its anti-diabetic effects. Studies have analyzed the activity of pomegranate extricates in forestalling stoutness and hyperlipidaemia. However, the underlying hypoglycemic mechanism of pomegranate's polyphenolic content has not yet been fully understood. Pomegranate is an excellent food for controlling blood sugar levels because it contains antioxidants, such as polyphenols, anti-diabetic compounds, and dietary fiber. Additionally, the fruit has a low GI and GL, which is advantageous for individuals with elevated sugar levels.

PLAN OF WORK

Identification and Authentication of Plant Lady finger and Pomegranate Material-

The plant Okra (Abelmoschus Esculentus L.) and Punica granatum was collected from botanical garden at Agriculture field of Dr. K. N. Modi University Newai (Raj.) and plant authentication from the Rajasthan University Jaipur

Required Material- Di-methyl Sulfoxide, Erythritol, Lady Finger seed extract, Pomegranate seed extract, Distilled water (Purchased from R. S. Enterprise Jaipur, Rajasthan) Electric mixer, Soxhlet apparatus, Beakers, Weighing machine, Water bath etc among the equipment’s used.

Preparation of Abelmoschus esculentus and Punica granatum Extract-

The plant Abelmoschus esculentus and Punica granatum seeds should be dry. Then seeds convert into powder form with the help of grinder. Then start the extraction process with help of ethanol. The mixture was filtered using a filter paper with help of Soxhlet assembly and the final product was concentrated using freeze drier.

Final extract was obtained for both plants using hot water bath.
Herbal Anti-diabetic syrup-
PRE-FORMULATION:

<table>
<thead>
<tr>
<th>SR/No</th>
<th>Parameters</th>
<th>Okra seeds Powder</th>
<th>Pomegranate seeds Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Particle size</td>
<td>900 – 1000 μm</td>
<td>350-400μm</td>
</tr>
<tr>
<td>2.</td>
<td>Angle of repose</td>
<td>24.2°</td>
<td>21.34 to 29.41°</td>
</tr>
<tr>
<td>3.</td>
<td>Bulk density</td>
<td>0.77gm/cm³</td>
<td>0.75gm/ml</td>
</tr>
<tr>
<td>4.</td>
<td>pH</td>
<td>6.41 to 6.48</td>
<td>4.55</td>
</tr>
</tbody>
</table>

Method:

Preparation of simple sugar free syrup-
Use the Erythritol (200 gm) and add (480 ml) of water and mix well till the erythritol was dissolved after that the solution heat 1 to 2 min. solution was boiled than it takes some for cool than simple sugar free syrup was ready. Store in dry and cool place

Antioxidant activity-
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity of the test samples was determined using the method as described by

Evaluation parameter of syrup-
Physical stability- The syrup should be clear and no solid particle present in the final syrup.
Viscosity Test- It is very important quality control test and viscosity is property of liquid that is directly related to resistance to flow.

pH Determination-The range of 3 to 6. This is because general medicaments (drugs) are stable in acidic pH. Hence to ensure the stability of drugs in syrup up to the defined shelf life (expiry period) the pH of medicated syrups is adjusted.

Solubility Test-Solubility is defined as syrup should be soluble in water.

ANTI-DIABETIC TEST BY IN-VIVO STUDY-

Determination of Glucose Uptake Capacity by Yeast Cells-
The established Cirillo technique was used to conduct this experiment. To make a 1% suspension, commercial baker’s yeast was dissolved in distilled water. The suspension was held overnight at 25 degrees Celsius ambient temperature.

The next day, a suspension of yeast cells was centrifuged at 4200 rpm for 5 minutes (Microfuge 16 Centrifuge, FX241.5P Rotor, 50/60 Hz and 220-240 V). Until a clear supernatant was achieved, the procedure was repeated with the addition of distilled water to the pallet. To create a 10% v/v suspension of the yeast cells, exactly 10 parts of the clear supernatant fluids were combined with 90 parts of distilled water. Dimethyl sulfoxide (DMSO) and a plant extract containing 1 to 5 mg w/v were combined until dissolved. The mixture was then supplemented with various concentrations (5, 10, and 25 Mm) of 1 mL of glucose solution and incubated for 10 min at 37°C. To initiate the reaction, 100 μL of yeast suspension was poured in the mixture of glucose and extract, vortexed, and incubated for another 60 minutes at 37°C. After incubation, the tubes were centrifuged for 5 minutes at 3800 rpm and glucose was estimated by using a spectrophotometer (UV 5100B) at 520 nm. Absorbance for the respective control was also recorded on the same wavelength.

The percent increase in uptake was calculated by the formula:

% Increase in glucose uptake = \[
\frac{(\text{Abs. of control} - \text{Abs. of sample}) \times 100}{\text{Abs. of control}}
\]

RESULT AND DISCUSSION-

Dried fruits seeds (50 gram) were placed in a muslin bag and treated to Soxhlet extraction using ethanol (90 percent), and the yield were obtained in table.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Crude drug quantity</th>
<th>Yield Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abelmoschus esculentus</td>
<td>50 (grams)</td>
<td>4gm</td>
</tr>
<tr>
<td>Punica granatum</td>
<td>50 (grams)</td>
<td>5gm</td>
</tr>
</tbody>
</table>
Phytochemical screening:
The phytochemical screening of drug extracts was carried out according to standard method (Tresa & Evans 1989).

Table 4

<table>
<thead>
<tr>
<th>S/N</th>
<th>Phytochemical Chemical Test</th>
<th>Ethanol Extract of Okra</th>
<th>Ethanol Extract of Pomegranate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alkaloids</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>2.</td>
<td>Glycosides</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>3.</td>
<td>Carbohydrates</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>4.</td>
<td>Saponin</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>5.</td>
<td>Flavonoids</td>
<td>Present</td>
<td>Present</td>
</tr>
</tbody>
</table>

![Figure 9: Density v/s weight plotting for antidiabetic syrup](image_url)

Table 5: Evaluation Parameter of herbal syrup

<table>
<thead>
<tr>
<th>S/No</th>
<th>Parameter</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Appearance</td>
<td>Yellowish-brown</td>
</tr>
<tr>
<td>2.</td>
<td>Odour</td>
<td>Characteristic</td>
</tr>
<tr>
<td>3.</td>
<td>pH</td>
<td>pH 6.3</td>
</tr>
<tr>
<td>4.</td>
<td>Viscosity</td>
<td>Viscosity 500-800cps.</td>
</tr>
</tbody>
</table>

![Figure 10: Difference Limen by plot for viscosity of different formulations](image_url)

Stability test:
To assess the formulation stability, was performed in the lab. Each formulation was stored at room temperature and 40°C temperature for 2-3 month and observed for physical stability.

Table 6: General evaluations and stability

<table>
<thead>
<tr>
<th>Admissibility Conditions (Initial)</th>
<th>Admissibility Conditions (30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Homogeneous syrup</td>
</tr>
<tr>
<td>Odour</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Colour</td>
<td>Yellowish brown</td>
</tr>
<tr>
<td>pH</td>
<td>6.0-6.5</td>
</tr>
<tr>
<td>Viscosity</td>
<td>15.000 mPas</td>
</tr>
</tbody>
</table>

CONCLUSION

The present study suggests that extraction of Abelmoschus Esculentus and Punica Granatum is required in order to generate better, safer, and more cost-effective anti-diabetic syrup to treat Diabetes. This study shows that the active compound in Abelmoschus Esculentus is Quercitin and Punica Granatum have Phenolic compound which create good anti-diabetes activity and have a great potential as an antibacterial agent. Other researchers have already found some information.

REFERENCES