Mesoporous Silica Nanoparticles Based Antigens and Nucleic Acids Delivery: A Review

Authors

  • Jemal Dilebo Department of Pharmaceutitcs and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Ethiopia

DOI:

https://doi.org/10.22270/ajprd.v8i2.686

Keywords:

Mesoporous silica nanoparticles, antigen, adjuvant, DNA, siRNA, miRNA

Abstract

Mesoporous silica nanoparticles (MSN) have been explored for the delivery of small molecule drugs, antigens, and nucleic acids because of their large surface area, pore volume, amenability of their surface for functionalization, stable mesoporous structure, and biocompatibility.  Biomoecules loading capacitites,  release and target cell accumulation efficiencies have been improved for both antigen and nucleic acid delivery by the synthesis of large-pore MSN, dendritic MSN, hollow-core MSN, and multifunctional MSN. This article overview the major advances in the use of MSN for delivery of antigens and therapeutic nucleic acids such as DNA, siRNA, and miRNA aimed for treatment of various diseases.   

 

 

Downloads

Download data is not yet available.

Author Biography

Jemal Dilebo, Department of Pharmaceutitcs and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Ethiopia

Department of Pharmaceutitcs and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Ethiopia

References

1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli, JC, Beck JS. Ordered mesoporous molecular sieves synthesized by liquid crystal template mechanism. Nature.1992; 359:710-2.
2. Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry. 2003; 27(1):73–9.
3. Ballem MA, Córdoba JM, Odén M. Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous and Mesoporous Materials. 2010; 129(1-2):106–11.
4. Mele´ndez-Ortizn HI, Garcı´a-Cerda LA, Olivares-Maldonado Y, Castruita G, Mercado-Silva JA, Perera-Mercado YS. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties. Ceramics International. 2012; 38(8):6353–8.
5. Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small. 2013; 9(18):3138–46.
6. Zhang H, Cheng T, Lai L, Deng S, Yu R, Qiu L, Zhou J, Lu G, Zhi C, Chen J. BN nanospheres functionalized with mesoporous silica for enhancing CpG oligodeoxynucleotide mediated cancer immunotherapy. Nanoscale. 2018; 10(30):14516–24.
7. Yang Y, Jambhrunkar M, Abbaraju PL, Yu M, Zhang M, Yu C. Understanding the effect of surface chemistry of mesoporous silica nanorods on their vaccine adjuvant potency.
Advanced Healthcare Materials. 2017; 6(17)
8. Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Hashimoto K, Yamazaki A, Ohno T, Tsuji NM. Synergistic effects of stellated fibrous mesoporous silica and synthetic dsRNA analogues for cancer immunotherapy. Chemical Communications. 2018; 54 (9):1057-60.
9. Tao C, Zhu Y, Xu Y, Zhu M, Morita H, Hanagata N. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs. Dalton Transaction.2014; 43(13):5142-50.
10. Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Central. Science. 2018; 4 (4):484-92.
11. Kwon D, Cha BG, Cho Y, Min J, Park EB, Kang SJ, Kim J. Extra-large pore mesoporous silica nanoparticles for directing in vivo m2 macrophage polarization by delivering IL-4. Nano Letters. 2017; 17(5):2747-56.
12. Ong C, Cha BG, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Applied Bio Materials. 2019; 2(8):3630-38.
13. Wang X, Li X, Ito A, Yoshiyuki K, Sogo Y, Watanabe Y, Yamazaki A, Ohno T, Tsuji NM. Hollow structure improved anti-cancer immunity of mesoporous silica nanospheres in vivo. Small. 2016; 12(26):3510-15.
14. Teng ZG, Su XD, Zheng YY, Sun J, Chen GT, Tian CC, Wang JD, Li H, Zhao YN, Lu GM. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chemistry of Materials. 2013; 25(1):98-105.
15. Xie J, Yang C, Liu Q, Li J, Liang R, Shen C, Zhang Y, Wang K, Liu L, Shezad K, Sullivan M, Xu Y, Shen G, Tao J, Zhu J, Zhang Z. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. Small.2017; 13(40).
16. Tu J, Du G, Reza Nejadnik M, Mönkäre J, van der Maaden K, Bomans PHH, Sommerdijk NAJM, Slütter B, Jiskoot W, Bouwstra JA, Kros A. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharmaceutical Research. 2017; 34(8):1693–1706.
17. Kong M, Tang J, Qiao Q, Wu T, Qi Y, Tan S, Gao X, Zhang Z. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics. 2017; 7(13):3276-92.
18. Lu Y, Yang Y, Gu Z, Zhang J, Song H, Xiang G, Yu C. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and co-delivery platform for enhanced cancer immunotherapy. Biomaterials. 2018. 175:82-92.
19. Abbaraju PL, Yang Y, Yu M, Fu J, Xu C, Yu C. Core-shell-structured dendritic mesoporous silica nanoparticles for combined photodynamic therapy and antibody delivery. Chemistry-An Asian Journal. 2017; 12(13):1465-69.
20. Abbaraju PL, Meka AK, Song H, Yang Y, Jambhrunkar M, Zhang J, Xu C, Yu M, Yu C. Asymmetric silica nanoparticles with tunable head−tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 2017; 139(18):6321−28.
21. Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, Yu C. Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angew. Chem. Int. Ed., 2017; 56(29):8446-50.
22. Virginio VG, Bandeira NC, dos Anjos Leal FM, Lancellotti M, Zaha A, Ferreira HB. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines. Heliyon.2017; 3(1):e00225.
23. Wang X, Li X, Yoshiyuki K, Watanabe Y, Sogo Y, Ohno T, Tsuji NM, Ito A. Comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Advanced Healthcare Materials. 2016; 5(10):1169–76.
24. Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Tsuji NM, Ohno T. Biodegradable metal ions doped mesoporous silica nanospheres stimulate anti-cancer th1 immune response in vivo. ACS Applied Materials & Interfaces. 2017; 9(50):43538-44.
25. Mahony D, Mody KT, Cavallaro AS, Hu Q, Mahony TJ, Qiao S, Mitter N. Immunisation of sheep with bovine viral diarrhoea virus, E2 protein using a freeze-dried hollow silica mesoporous nanoparticle formulation. PLoS One. 2015; 10(11):e0141870.
26. Bai M, Dong H, Su X, Jin Y, Sun S, Zhang Y, Yang Y, Guo H. Hollow mesoporous silica nanoparticles as delivery vehicle of foot-and-mouth disease virus-like particles induce persistent immune responses in guinea pigs. Journal of Medical Virology, 91(6):941-8.
27. Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong KL, Ma P, Lin J. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Advanced Materials. 2018; 30(52).
28. Peng X, Liang Y, Yin Y, Liao H, Li L. Development of a hollow mesoporous silica nanoparticles vaccine to protect against house dust mite induced allergic inflammation. International Journal of Pharmaceutics. 2018; 549(1-2):115-123.
29. Wang D, Xu X, Zhang K, Sun B, Wang L, Meng L, Liu Q, Zheng C, Yang B, Sun H. Co-delivery of doxorubicin and MDR1-siRNAby mesoporous silica nanoparticles-polymer polyethylenimine to improve oral squamous carcinoma treatment. International Journal of Nanomedicine. 2018; 13:187–98.
30. Zhan Z, Zhang X, Huang J, Huang Y, Huang Z, Pan X, Quan G, Liu H, Wang L, Wu C. Improved gene transfer with functionalized hollow mesoporous silica nanoparticles of
reduced cytotoxicity. Materials. 2017; 10(7):731.
31. Chang JH, Tsai PH, Chen W, Chiou SH, Mou CY. Dual delivery of sirna and plasmid dna using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic Neurons. Journal of Materials Chemistry B. 2017; 5(16):3012-23.
32. Mahmoodi M, Behzad-Behbahani A, Sharifzadeh S, Abolmaali SS, Tamaddon AM. Co-condensation synthesis of well-defined mesoporous silica nanoparticles: effect of surface chemical modification on plasmid DNA condensation and transfection. IET Nanobiotechnology. 2017; 11(8):995-1004.
33. Chen L, She X, Wang T, Shigdar S, Duan W, Kong L. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA. Journal of Nanoparticle Research. 2018; 20 (37).
34. Sun L, Wang D, Chen Y, Wang L, Huang P, Li Y, Liu Z, Yao H, Shi J. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials. 2017; 133:219-228.
35. Dilnawaz F, Sahoo SK. Augmented anticancer efficacy by si-RNA complexed drug loaded mesoporous silica nanoparticles in lung cancer therapy. ACS Applied Nano Materials, 2018: 1(2):730-40.
36. Roberts CM, Shahin SA, Wen W, Finlay JB, Dong J, Wang R, Dellinger TH, Zink JI, Tamanoi F, Glackin CA. Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models.
Nanomedicine: Nanotechnology, Biology, and Medicine. 2016; 13(3):965-76.
37. Terauchi M, Kajiyama H, Yamashita M, Kato M, Tsukamoto H, Umezu T, Hosono S, Yamamoto E, Shibata K, Ino K, Nawa A, Nagasaka T, Kikkawa F. Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma. Clinical & Experimental Metastasis. 2007; 24(5):329-39.
38. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004; 117(7):927-39.
39. Shen J, Liu H, Mu C, Wolfram J, Zhang W, Kim HC, Zhu G, Hu Z, Ji LN, Liu X, Ferrari M, Mao ZW, Shen H. Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 2017; 9(16):5329-41.
40. Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. International Journal of Nanomedicine 2018; 13:1241–56.
41. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Research. 2010; 70(8):3119-27.
42. Wang S, Liu Z, Wang L, Zhang X. NF-κB signaling pathway, inflammation and colorectal cancer. Cellular and l Molecular Immunology. 2009; 6(5):327-34.
43. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-[kappa] B as the match maker. Nature Immunology. 2011; 12(8):715-23.
44. Lin JT, Liu ZK, Zhu QL, Rong XH, Liang CL, Wang J, Ma D, Sund J, Wang GH. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017; 155:41–50.
45. Wang Y, Song H, Yu M, Xu C, Liu Y, Tang J, Yang Y, Yu C. Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B. 2018; 6(24):4089-95.
46. Li Z, Zhang L, Tang C, Yin C. Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment-responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy. Pharmaceutical Research. 2017; 34(12):2829-41.
47. Xiong L, Bi J, Tang Y, Qiao SZ. Magnetic Core–shell silica nanoparticles with large radial mesopores for siRNA delivery. Small, 2016; 12(34):4735-42
48. Wang S, Liu X, Chen S, Liu Z, Zhang X, Liang, XJ, Li L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsules encapsulated doxorubicin/siRNA cocktail. ACS Nano. 2018; 13(1):274-83.
49. Yang H, Chen Y, Chen Z, Geng Y, Xie X, Shen X, Li T, Li S, Wu C, Liu Y. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomaterials Science, 2017; 5(5):1001-13.
50. Shi XL, Li Y, Zhao LM, Su LW, Ding G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids and Surfaces B: Biointerfaces, 173:599-606.

Published

2020-04-15

How to Cite

Dilebo, J. (2020). Mesoporous Silica Nanoparticles Based Antigens and Nucleic Acids Delivery: A Review. Asian Journal of Pharmaceutical Research and Development, 8(2), 50–57. https://doi.org/10.22270/ajprd.v8i2.686