Available online on 15.02.2021 at http://ajprd.com

Asian Journal of Pharmaceutical Research and Development

Open Access to Pharmaceutical and Medical Research

© 2013-20, publisher and licensee AJPRD, This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited

Review Article

Utilization of Natural Dyes Substances for Histological Staining: A Review

Gita Hartika, Zulharmita Zulharmita, Ridho Asra

School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

ABSTRACT

Histological staining is one the technical processes in the preparation of tissue samples by coloring using histological staining to assist in the study. Natural dyes as an alternative solution to replace synthetic dyes because it can affect human health such as skin allergies, digestive system and respiratory system. This review article aims to determine the quality of natural dyes used to color tissue in the process of making animal and plant tissue preparations. Some of the plants used as natural dyes, coloring indicates a change in tissue preparations. From some plants used for natural dyes in the histology of animal and plant tissues, chemical compounds contained there in that can provide colors such as flavonoids, alkaloids, saponins, tannins, anthocyanins, betasianins, and curcuminoids. The resulting dye looked good or not is influenced by the pH, concentration, staining time, method and solvent used in the staining.

Keywords: Natural dyes, Histology, Tissue.

A R T I C L E I N F O: Received; 29 Dec. 2020 Review Complete; 19 Jan. 2021 Accepted; 12 Feb. 2021 Available online 15 Feb. 2021

Cite this article as:

Hartika G, Zulharmita Z, Asra R, Utilization of Natural Dyes Substances for Histological Staining: A Review, Asian Journal of Pharmaceutical Research and Development. 2021; 9(1):149-158. DOI: http://dx.doi.org/10.22270/aiprd.v9i1.925

*Address for Correspondence:

Ridho Asra, School of Pharmaceutical Science (STIFARM) Padang, Indonesia 25147

INTRODUCTION

Histology is a study of cells and tissues of animals and plants through staining and cutting are then examined under a microscope (electron or light microscope). The histological studies used in forensic, investigation, autopsy, diagnosis, and education. In pharmaceutical, histology used in treatments to search for diseased tissue to aid treatment¹. Histological staining is one of the technical processes in the preparation of tissue samples by coloring using histological staining to assist in the study². Histological staining techniques have developed very rapidly both through chemical, molecular biological tests, and immunological techniques collectively and greatly facilitate the study of tissues and organs³.

Ordinary dyes can be classified into four groups, namely synthetic dyes, dyes made similar to natural dyes, inorganic dyes and natural dyes⁴. Synthetic dyes commonly used as tissue dyes such as safranin-O and methylen blue (MB) are relatively easy to use in microscope inspections. However, the use of these dyes has a negative effect on the human body, where safranin-O is one of the cationic dyes whose waste can cause dangerous contamination in pharmaceuticals and textile factories, besides safranin-O dyes can cause negative effects on human health such as skin allergies⁵. In addition, MB causes cardiovascular disorder, dizziness, fever, headache, skin problem and anaemia⁶. MB is also carcinogenic and very difficult to decompose^{6,7.} An alternative solution to overcome this problem is to use natural dyes that are more eco friendly, non-carcinogenic, non-toxic and biodegradable⁸. Plants have great potential as a source of natural dyes, especially in the roots, bark, leaves, fruit, wood, seeds, and flowers^{9,10,11}. The use of natural strains do not cuase harms, cheap, non-allergic, non-toxic, and eco friendly⁸.

METHODS

The author created this article review by conducting literature studies. The primary data was collected from international journals in the last ten years (2010-2020). The works of literature were collected from trusted online journal sites such as the digital library, Science Direct, Pub Med, NCBI, Researchgate, Google scholar, and other E-resource with keyword "Natural dyes", "Histology", and "Tissue".

RESULTS OF UTILIZATION OF NATURAL DYES USED FOR ORGAN HISTOLOGY

S. No.	Plant Species	Plant Parts	Parts tested	Result	Result Image	Countries	Author
1	Erythrina crista-galli	Flower	The cross section of the <i>piper betle</i> L.	The <i>Erythrina</i> <i>crista-gali</i> flower tested against the cross-section of <i>piper betle</i> stems provides good staining quality at a concentration of 70%.	Concentration of 70% in February and July	Indonesia	12
2	Indigenous Berberis Pachyacantha Kochne	Plant	The cross section of Zea mays and Helianthus annuus	Berberis pachyacantha kochne in ethyl has proven to be highly selective.	(A).Cross-section of <i>Helianthus</i> <i>annuus L</i> , stained with extracts of <i>Berberis pachyacantha kochne</i> .	Pakistan	13
3	 Enantia chloratha Harugana madagascariensis Hibiscus sabdariffa Sarcocephalus latifolius Sphenocentrum jollyanum Sorghum bicolor 	bark, flower petals, roots, leaf sheath	Wood anatomy	The phytodyes used are highly selective in providing color to fibers and other lignified cells and will be even better when used with dyes that have an affinity forthin- wall cells (eg parenchyma cells) except for <i>Hibiscus</i> sabdariffa.	(A).T.S. single stain wood cross section with Phytodyes (X400).	Nigeria	14
4	Lonchocarpus Cyanescens	Leaves	Testicular tissue	The staining used to stain the structures on the testes to a blue color in the optimal staining intensity was achieved at a staining time of 5 minutes.	(A).Time: 5 minutes Figure 1: Photomicrograph of testes stained with <i>Lonchocarpus</i> <i>cyanescens</i> .	Nigeria	15
5	Syzygium cumini	Fruit	Rat liver tissue	The rat liver tissue can be colored by natural dyes from black plums, namely the nucleus and cytoplasm of the liver cells.	50.0 μm 9.	Thailand	16
6	Allium cepa	Onion peel	Tissue	The cytoplasm of cells and connective tissue was stained with a color that appears reddish to yellowish brown in color.		Nigeria	17
7	Hibiscus Sabdariffa	Flower	Tissue skin biopsy	The <i>Hibiscus</i> Sabdariffa solution produced the best staining in 5% solution and the		Sudan	11

	1.Bixa orellana 2. Pterocarpus osun 3. Curcuma domestica 4.Lonchocarpus cyanescens	The seeds Dry wood core Rhizome Young leaves	Cola gigantean wood	The dye extract from <i>Bixa orellana</i> gives a striking		Berlin Heidelberg	18
		Toung leaves	Journal	orange color to the fibers and vessels. Meanwhile, the dye extract from <i>Curcuma</i> <i>domestica</i> is discriminatory in giving the fibers a brilliant yellow color, The dye extract from <i>Lonchocarpus</i> <i>cyanescens</i> easily absorbs moisture from the ipso facto atmosphere and is thought to be rich in sugar content. Also the dye extract from <i>Pterocarpus osun</i> gives its red color to all cells except fibers and blood vessels. In addition, the dye extracts from <i>B.orellana</i> , <i>C.domestica</i> and <i>P.osun</i> were specific when used in double staining with Alcian blue.	The cross sections of Cola gigantea bark were stained with dye extracts of Bixa orellana, Curcuma domestica, Pterocarpus osun and Alcian Blue.		
	Black Mulberries (Morus Nigra)	Fruit	Nerve Rat tissue staining	The hippocampus and cortex neurons are stained with dark brown. The hypothalamus is stained brown and neurons are observed as light brown and the staining reaction is poor.	 (A).The histological architecture of the rat cortex was stained with mulberry extract. 200 X. (B). The histological architecture of the rat hippocampus was stained with mulberry extract. 200 X. 		19
10	Curcuma longa L.	Rhizome	Epithelial tissue, keratin, collagen fibers, muscle, adipocytes, blood vessels and red blood cells (RBC), cartilage and bone	Turmeric can be used as a stain after hematoxylin, its staining ability is the same as eosin staining with special affinity for collagen and muscle fibers.	(A). Collagen photomicrographs showed a comparison of eosin and turmeric staining ability at \times 10 (B). Muscle photographs showed a comparison of eosin and turmeric staining ability \times 40.	India	20

Asian Journal of Pharmaceutical Research and Development. 2021; 9(1): 149-158

11	Ceratonia Siliqua Bark	Bark	Liver, lung	Bark extract from		Nigeria	21
			and kidney tissue.	<i>Ceratonia siliqua</i> <i>bark</i> dyes collagen fibers, red blood cells and muscle fibers by giving it a light brown color 12 within 15 minutes. The staining can be affected by pH and the environment because the bark extract of <i>Ceratonia siliqua</i> combined with haematoxylin provides poor tissue architecture when compared to eosin-combined haematoxylin dyes.	(A). (a and b): The human liver control section (H&E x100) showed normal characteristics of Haematoxylin and Eosin (3A) staining, and the human liver portion (H & <i>Ceratonia siliqua</i> x100 bark extract) showed poor cytoarchitectural differences (3B).		
12	Cola acuminata	Seed	Rat tissue	Cola acuminata and haematoxylin extracts could stain then ucleus and cytoplasmic tissue and it color was bluish and yellowish.	 (A). Rat Kidneys with Haematoxylin & Kola Extract x400). (B). (Haematoxylin & Eosin x400) 	Nigeria	22
13	<i>Hylocereus polyrhizus</i>	Pulpy	Allium ascalonicum chromosome	Mitotic cell chromosomes stained red with 1% aceto-orcein were used as positive control.	 1.Chromosome staining onion Allium ascalonicum with a ratio of natural dyes using a magnification of 40x:A. The squashing method with the ratio A contains 2:1 (w/v), the asquashing method with 1% aceto- orcein as a positive control. 	Indonesia	23
14	Hylocereus costaricensis	Pulpy	Plant tissue	Hylocereus Costaricensis fruit peel extract can provide color with the most effective concentration was 60% higher percentages than other concentrations.	The root of Zea mays L. with dragon fruit peel extract staining 60%	Indonesia	24
15	Curcuma longa	Rhizome	Epithelial tissue, keratin, collagen fibers, muscle, adipocytes, Blood vessels and red blood cells (RBC), cartilage and bone	Curcumin's ability to staining these structures by imparting a distinct, yellowish hue and manner, a special affinity for collagen and muscle fibers.	(A).Collagen photomicrographs show comparisons eosin and turmeric staining ability (× 40).	India	25
ISSN: 2	2320-4850			[152]	CODE	EN (USA): AJPRI	IS

16	Rhizopora sp.	Bark	Tilapia skin tissue	Testing the mangrove peel solution with a soaking time of 90 minutes. The SEM test results of natural dyes for mangrove bark, collagen structure, have empty spaces which tend to be hollow and un even. So tha it causes the low physical quality of tilapia.	 (A). Muscle photomicrographs showed the ratio of eosin and turmeric staining ability (× 40). (A). Cross section of tilapia skin collagen with mangrove bark dye for 90 minutes soaking. 	Indonesia	26
17	Intsia bijuga	Wood	Skin tissue	The results showed that at a concentration of 25% it was seen that the color more evenly seeped into collagen fibers and had a better structure of skin tissue.	(A). 25% Merbau solution	Indonesia	27
18	Curcuma domestica Val.	Turmeric rhizomes	Melinjo plant tissue	The staining used for plant tissue maceration is turmeric filtrate and turmeric filtrate mixed with lime / Ca (OH) 2 water. The color seen on the plant tissue preparations using turmeric filtrate alone looks yellow but less bright. Meanwhile, the preparations that use turmeric filtrate dye mixed with lime give a brighter yellow color.	 (A). Sklereid Melinjo using turmeric + Ca (OH) 2 filtrate dye, magnification 400x. (B).Melinjo tracheids using turmeric + Ca (OH) 2 filtratedye, microscope magnification 1000x. (C). Melinjo trachea using turmeric + Ca (OH) 2 filtrate dye, microscope magnification 400x. 	Indonesia	28
19	Clitoria ternatea.L	Flower	Plant tissue (Allium cepa L)	With the addition of 4 grams, 6 grams, 8 grams and 10 grams of flower telang added with a 1: 1 citric acid solution, the staining began to look good. The color produced in the telang flower extract was almost the same as the		Indonesia	29

				synthetic dye / safranin after being dripped on the preparations, the color appeared purplish red on the observed parts of the cell wall, cytoplasm and cell nucleus.			
20	1. Hibiscus sabdariffa 2. Sorghum bicolor	1. Dried Leaves 2. Stems	Wistar rat brain tissue	All the photomicrograph groups displayed the same hippocampal cells and were almost indistinguishable. The layers of neurons and glial cells can be colored well. But the stains differ greatly from the hippocampal component which is comparable to controls.	The histomorphological features of the hippocampal layer, neurons and glial cells were clearly preserved in all groups.	Nigeria	30
21	Hibiscus sabdariffa	Dried leaves	Skin tissue	Staining with Hisbiscus-eosin gave a blackish blue color, while staining with H&E staining gave a purplish blue color and cytoplasmic components were red with the use of Hisbiscus-eosin for H&E.	B Connective tissue Fig.IIa: Hib/Eosin x 40	Nigeria	31
22	Hibiscus sabdariffa	Dried leaves	Cerebellum, cerebrum, and pons tissue	The brain tissue is well stained when compared to standard synthetic hematoxylin and eosin dyes. The nucleus is dark purple and red stains the blood cells while the cytoplasmic components are stained with a light pink color.	Ia: <i>Hibiscus /</i> Eosin Cerebrum Mag x 400. Nucleus: dark purple, cytoplasm: pink	Nigeria	32
23	Tectona grandis	Young leaves	Plant tissues	Young teak leaf filtrate dye can absorb and color tissue in <i>Pluchea</i> <i>indica</i> stem preparations, <i>Glycine max</i> root preparations, <i>and</i> <i>Ordchidae</i> root preparations such as epidermis, parenchyma, phloem, xylem, sclerenchyma, and also pericicles.	Cross section of <i>Plucea indica</i> stem	Indonesia	33
24	1. Hisbiscus 2. Sorghum bicolor	1. Flowers 2. Trunk	Liver and kidney tissue	The use of <i>Hibiscus-Sorghum</i> color combination, the nucleus components appear	Image 1a: <i>Hibiscus / Sorghum</i> . Kidney showing dark purple nucleus and prominent Bowman's capsule x 400.	Nigeria	34

				dark purple, the cytoplasmic components appear light brown.			
					Image Ib: <i>Hibiscus / Sorghum</i> . Liver shows nucleus: dark purple and cytoplasm: light brown x 400.		
25	Lawsonia inermis linn	Dried leaves	Aniospermic stem tissue	The dye extract from <i>Lawsonia</i> <i>inermis</i> which is dissolved in ethyl alcohol and water can be used effectively to stain tissue in lignified plants if used in a single stain.	A. Helianthus annuus L. stem cross-section, stained with Lawsonia inermis L. extract, in water.	Pakistan	35
			mal	of Phare	B. Zea mays L. stem cross sections, stained with Lawsonia inermis L. extract, in ethyl alcohol.		
26	Clitoria ternatea L.	Flower	Bone scrub preparations	Natural staining of the telang flower with a ratio of 1:10 and the resulting image was good, the parts that were clearly visible were the havers system, canalis havers, and osteocytes. The less obvious parts are lacunae, lamellae, and canaliculus.	$ \begin{array}{c} \hline \hline \hline $	Indonesia	36
27	Zingiber officinale	Rizhome	Muscle fibers and cytoplasm of Wistar rats	The solution of Zingiber officinale extract used for staining canstain muscle fibers and cytoplasm with a yellow colorand a dark green core in it, when used as a counter stain for hematoxylin for 4 minutes. The staining reaction can be observed to be similar to that of eosin, except for its yellow-green color.	Fig 1 Fig 1 Figure 1: Parts of heart tissue stained with 90% ethanol extract of <i>Z.officinale</i> , muscle fibers stained yellow and core dark green.	Nigeria	37
28	1.Zingiber officinale Roscoe 2. Curcuma longa L	Rizhome	Tissue	Compared with Curcuma longa, Zingiberis officinale showed better staining intensity and specificity on the cytoplasm and connective tissue components. And shows a significant difference. The long shelf life of Zingiberis	Figure 1: Photomicrograph showing epithelial cytoplasmic stains (a × 10), connective tissue components such as nerve bundles, muscle fibers (b × 20), sebaceous glands (c × 40), and blood vessels (d × 20), using stain <i>Z Officinale</i> .	India	38
	2320-4850	1	L	[155]		EN (USA): AJPRI	

Asian Journal of Pharmaceutical Research and Development. 2021; 9(1): 149-158

				officinale is also better than Curcuma longa.	Figure 2: Photomicrograph showing the comparison of cytoplasmic stains on the epithelial layer using <i>Z. officinale</i> (a) and C. longa (b) stains at × 20.		
29	1.Melastoma malabathricum 2. Ipomea batatas var	1. Fruit 2. Tubers	Allium cepa roots	The staining time of 90 minutes is the best result obtained from the preparation. And the comparison of <i>Allium cepa</i> mitotic preparations has a very good quality when colored with senduduk fruit extract while sweet potato extract provides a fairly good staining quality.	B Figure 1. Staining with senduduk extract: B. Staining for 90 minutes. Purple sweet potato extract staining: E. Staining 90 minutes	Indonesia	39
30	Curcuma Longa	Rhizome	Testes	The use of <i>Curcuma longa</i> dye for 15 minutes at a concentration of 0.2 g / ml can clearly stain the testes on the seminiferous epithelial tissue and the intersitum yellow. <i>Curcuma</i> <i>longa</i> also provides a great stain counter for Haematoxylin.	Figure 1: Photo micrograph of testes stained with <i>Curcuma longa</i> at a concentration of 0.2 g / ml for 15 minutes.	Nigeria	40

DISCUSSION

The application of natural dyes from plants for staining of various biological tissues from an alternative source will decrease the expense for purchasing the synthetic dye and reduce their effects on human and environment^{16,18}. Based on the results of the utilization of natural dyes used for organ histology, each plant used as natural dyes has the ability to color tissue with different qualities. The natural dye of the Erythrina crista-gali flower tested against the cross-section of *piper betle* stems provides good staining quality at a concentration of 70%. The coloring ability of Erythrina crista-gali flowers is caused by the presence of anthocyanin compounds¹². In addition, the berberis pachyacantha kochne plant extracted with ethyl was found to contain curcuminoids which were shown to selectively color the cross-section of the stems of Zea mays and Helianthus annuus¹³. Meanwhile, the leaves of the Lonchocarpus cyanescens plant which are used to color testicular tissue contain several compounds such as saponins, tannins, flavonoids and alkaloids. But the compounds that play an important role in giving color are tannins and flavonoids so that the testicles appear blue¹⁵. The fruit of *Syzygium cumini*, which was tested to coloring the liver tissue of rats, it showed a color change in nucleus and cytoplasm, because the fruit contained tannin and anthocyanin compounds that could give color¹⁶. The natural

dye for the skin of the *Allium Cepa* tube which is used to color the tissue contains saponin and tannin compounds that give color changes to the cytoplasm of cells and connective tissue so that it looks reddish to yellowish brown color¹⁷.

Natural dyes from the rhizome of *Curcuma longa* that are used contain curcuminoid compounds that have good coloring ability after hematoxylin, especially against collagen tissue and muscle fibers^{20,25}. Cola acuminata seeds containing anthocyanin and tannin compounds used to color rat tissue in the nucleus and cytoplasm give a bluish and yellowish color²². Natural dye from the pulp of Hylocereus polyrhizus containing the compound betasianin was used to staining the chromosomes of Allium ascalonicum in red²³. In addition, the skin of Hylocereus costaricensis which contains anthocyanin compounds can also be used to color plant tissue, with the most effective concentration at 60%²⁴. This staining is to facilitate observation of cells or tissues under a microscope, because the substance has a selective affinity for cell organelles¹⁰. Curcuma domestica rhizome which contains curcuminoid compounds was used to color plant tissue on melinjo stems, and gives a brighter color when mixed with $Ca(OH)2^{28}$. The higher the concentration of Ca (OH) 2 added, will affect the strength of the given color⁴². There is also a tissue staining using dried leaves Hisbiscus sabdariffa-eosincontaining compounds anthocyanins for coloring skin tissue. Hibiscus sabdariffa without combination is used to color the cerebellum, cerebrum and nucleus with different colors^{31,32}. Young leaves of *Tectona grandis* are also used as natural dyes because it contain anthocyanins for staining plant tissue in the epidermis, parenchyma, phloem, xylem, sclerenchyma and perisicles which can absorb and color tissue³³. Melastoma malabathricum fruit that contains flavonoid compounds, saponins, tannins and Ipomea batatas tubes contains anthocyanin and tannin compounds. It used as natural dyes to give color to the Allium Cepa root tissue with the best coloring results obtained for 90 minutes of staining. The rhizome of Curcuma longa which contains saponins, tannins, flavonoids, and alkaloids with a concentration of 0.2 g / ml which is used for staining the testes, gives a yellow color⁴⁰.

REFERENCES

- Black J. Microbiology: Principles and exploration (8th ed.). John Wiley & Sons. p. (2012); 68.
- 2. Anderson J. An introduction to Routine and special staining. Retrieved on August, 2011; 18.
- Shostak S. Histology's nomenclature: Past, present and future. Bio. Syst, 2013; 2(4):122.
- Hayati EK, Budi US, Hermawan R. Konsentrasi Total Senyawa Antosianin Ekstrak Kelopak Bunga Rosella (*Hibiscus sabdariffa* L.): Pengaruh Temperatur dan pH. Journal of Chemistry, 2012; 6(2):138-147.
- Bayazit ŞS. Investigation of Safranin O adsorption on superparamagnetic iron oxide nanoparticles (SPION) and multi-wall carbon nanotube/SPION composites. Desalination and Water Treatment, 2014; 52(37-39):6966-6975.
- Patil MA, Shinde JK, Jadhav AL, Deshpande SR. Adsorption of methylene blue in waste water by low cost adsorbent bentonite soil. International Journal of Engineering Science and Computing, 2017 6(9):2160-2167.
- Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption ofmethylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 2010; 177(1-3):70-80.
- Deepali K, Lalitha S, Deepika M. Application of aqueous plant extracts as biological stains. International Journal of Scientific & Engineering Research, 2014; 5(2):1586–1589.
- Kamel FH, Najmaddin C. Use of some plants color as alternative stain in staining of bacteria. kirkuk university journal for scientific studies, 2016; 11(3):248-253.
- Kumar N, Mehul J, Das B, Solanki JB. Staining of Platyhelminthes by herbal dyes: An eco-friendly technique for the taxonomist. Veterinary world, 2015; 8(11):1321.
- Raheem EMA, Ibnouf AAO, Shingeray OH, Farah H J. Using of *Hibiscus sabdariffa* extract as a natural histological stain of the skin. American Journal of Research Communication, 2015; 3(5), 211-216.
- Susetyarini E, Wahyuni S, Kharoir I, Husamah, Setyawan D. Influence of *Erythrina crista-galli* L. extract natural dye in plant histology staining. In AIP Conference Proceedings. 2020; (Vol. 2231, No. 1, p. 040027). AIP Publishing LLC.
- Jan HU, Shinwari ZK, Marwat KB. Influence of Herbal Dye Extracted From Dry Wood of *Indigenous Berberis Pachyacantha Kochine* In Plant Histological Staining. Pak. J. Bot. 2011; 43(5), 2597-2600.

CONCLUSION

Some plants that used for natural dyes in the histology of animal and plant tissues, it contains chemical compounds that can provide colors such as flavonoids, alkaloids, saponins, tannins, anthocyanins, betasianins, and curcuminoids.The resulting dye influenced by pH, concentration, staining time, method and solvent used in the staining.

ACKNOWLEDGMENTS

The authors would like to thank the School of Pharmaceutical Science (STIFARM) Padang, Indonesia. Special thanks to my supervisor lecturers and staff for their support in completing this review article.

- 14. Akinloye AJ, Illoh HC. Exploring the potential of some phytodyes as histological stains in wood anatomy. Tropical Plant Research. 2018; 5(2):180-192.
- Bassey RB, Bakare AA, Osinubi AA, Oremosu AA. Staining properties of *Lonchocarpus cyanescens* on the testes. Sci Rep. 2012; 1, 211.
- 16. Suabjakyong P, Romratanapun S, Thitipramote N. Extraction of natural histological dye from black plum fruit (*Syzygium cumini*). Journal of the Microscopy Society of Thailand. 2011; 4(1): 13-15.
 - Itodo SE, Oyero S, Umeh EU, Ben A, Etubi MD. Phytochemical properties and staining ability of red onion (*Allium cepa*) extract on histological sections. Journal of Cytology & Histology. 2014; 5(06).
 - Akinloye AJ, Illoh HC, Olagoke AO. Screening of some indigenous herbal dyes for use in plant histological staining. Journal of Forestry Research. 2010; 21(1):81-84.
 - 19. Tousson EM, Al-Behbehani B. Black mulberries (*Morus Nigra*) as a natural dye for nervous tissues staining. The Egyptian Journal of Experimental Biology (Zoology). 2010; 6,(1):159-164.
 - 20. Kumar S, Singh NN, Singh A, Singh N, Sinha RK. Use of *Curcuma longa* L. extract to stain various tissue samples for histological studies. Ayu. 2014; 35(4):447-451.
 - Okpidu EE, Okon AU, Oyadonghan GP, Ogbodo LA, Onyenekwe ECN. Histological study on the staining potentials of Aqueous extract of *Ceratonia Siliqua Bark*. International Journal of Basic, Applied and Innovative Research. 2014; 1(4), 151-154.
 - 22. Shehua SA, Sonfadaa ML, Danmaigoroa A, Umar AA, Henaa SA, Wiamb IM. Kola nut (*Cola acuminata*) extract as a substitute to histological tissue stain eosin. Scientific Journal of Veterinary Advances. 2012; 1(2):33-37
 - Genesiska, Pratiwi H. Extract of Dragon Fruit Pulp (*Hylocereus polyrhizus*) Potentially Stain Chromosomes of Red Onion (*Allium ascalonicum*). Biogenesis: Jurnal Ilmiah Biologi. 2018; 6(2), 93-97.
 - 24. Wagiyanti H, Noor R. Red dragon fruit (*Hylocereus costaricensis Britt. Et R.*) peel extract as a natural dye alternative in microscopic observation of plant tissues: The practical guide in senior high school. JPBI (Jurnal Pendidikan Biologi Indonesia). 2017; 3(3), 232-237.
 - Suryawanshi H, Naik R, Kumar P, Gupta R. Curcuma longa extract–Haldi: A safe, eco-friendly natural cytoplasmic stain. Journal of oral and maxillofacial pathology: JOMFP. 2017; 21(3):340-344.
 - 26. Ramadhan VG, Riyadi PH, Wijayanti I. Aplikasi kulit kayu mangrove (*Rhizopora Sp.*) sebagai alternatif pewarna alami pada

kulit samak ikan Nila (*Oreochromis Niloticus*). In Prosiding Seminar Nasional Kulit, Karet dan Plastik. 2016; (Vol. 5, No. 1).

- 27. Hardianti M, Sumardianto, Anggo AD. Pengaruh Penggunaan Kayu Merbau (*Intsia Bijuga*) Sebagai Pewarna Alami Dalam Pewarnaan Kulit Samak Ikan Bandeng (*Chanos Chanos Forsk.*). Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 2016; 5(1), 8-15.
- Sa'diyah RA, Budiono JD, Suparno G. Penggunaan filtrat kunyit (*Curcuma domestica val.*) sebagai pewarna alternatif jaringan tumbuhan pada tanaman melinjo (*Gnetum gnemon*). BioEdu. 2015; 4(1).
- 29. Tirtasari NL, Prasetya AT. Pengaruh Rasio Berat Bunga Telang (*Clitoria ternatea* L.) dan Volume Pelarut Asam Sitrat terhadap Pewarnaan Preparat Jaringan Tumbuhan. Indonesian Journal of Chemical Science. 2020; 9(3), 201-204.
- 30. Ola MA, Abiola OO, Benard SA, Tangaza MA, Tanwa OB. *Hibiscus-Shorgum*: A new morphological stain in neurohistology. International Journal of Health Research and Innovation. 2016; 4(1), 31-38.
- Benard SA, Muhammed AO, Fowotade AA, Afolabi OO, Olutunde OA. *Iron roselle*: A progressive nuclear stain for connective tissue of skin. International Journal of Health Research and Innovation. 2017; 5(2), 25-31.
- 32. Benard SA, Muhammed AO, Fowotade AA, Afolabi OO, Olutunde OA. *Hibiscus sabdariffa* extract as haematoxylin substitute in the histological demonstration of brain tissues. African Journal of Cellular Pathology. 2015; 5, 32-35.
- 33. Nurwanti M, Budiono JD, P Rinie P. Pemanfaatan filtrat daun muda jati sebagai bahan pewarna alternatif dalam pembuatan preparat jaringan tumbuhan. BioEdu. 2013; 2(1), 73-76.

- 34. Benard SA, Muhammed AO, Fowotade AA, Afolabi OO, Olutunde OA. Sorghum bicolor extract: A suitable counter stain in hibiscus extract nuclear staining of liver and kidney. African Journal of Cellular Pathology.2015; 4(2), 13-16.
- 35. Jan HU, Shinwari ZK, Khan AA. Staining effect of dye extracted from dry leaves of *lawsonia inermis linn* (henna) on angiospermic stem tissue. Pak. J. Bot. 2011; 43(1), 383-389.
- 36. Wahyuni S, Tosiyana VR. Identifikasi preparat gosok tulang femur ayam (*Gallus gallus*) dengan pewarnaan alami bung atelang (*Clitoria ternatea* L.). In Prosiding Seminar Nasional Pendidikan Biologi. 2018; 82-86
- 37. Ajileye AB, Iteire AK, Arigi QB. Zingiber officinale (ginger) extract as a histological dye for muscle fibers and cytoplasm. Int. J. Med. Sci. Public Health. 2015; 4, 1445-1448.
- Sudhakaran A, Hallikeri K, Babu B. Natural stains Zingiber officinale Roscoe (ginger) and Curcuma longa L. (turmeric)–A substitute to eosin. Ayu. 2020; 39(4), 220-225.
- Dafrita IE, Sari M. Senduduk dan ubi jalar ungu sebagai pewarna preparat squash akar bawang merah. JPBIO (Jurnal Pendidikan Biologi). 2020; 5(1), 46-55.
- 40. Bassey RB, Oremosu AA, Osinubi AA. *Curcuma longa*: staining effect on histomorphology of the testis. Macedonian Journal of Medical Sciences. 2012; 5(1), 26-29.
- 41. Suheryanto D. Optimalisasi Celupan Ekstrak Daun Mangga Pada Kain Batik Katun Dengan Iring Kapur. Prosding Seminar Nasional Rekayasa Kimia Proses. Semarang Universitas Diponegoro. 2012

[158]